Aufgabe 3: "Zufallsgrössen"

Rep-FS22 - Aufgabe 3:

Die Zufallsgrösse X habe Dichtefunktion $f(x) = Kx^3$ auf [0, 1] und sei 0 sonst. Berechnen Sie:

- a) K.
- b) E(X).
- c) den Median.
- d) V(X) und sd(X).
- e) $F_X(a)$.

Lösung:

a)
$$K=4$$
 b) $E[X]=\frac{4}{5}=0.8$ c) Median = $\sqrt[4]{0.5}$ d) $V[X]=\frac{2}{75},\ sd[X]=\sqrt{\frac{2}{75}}$ e) $F_X(a)=0$ für $a<0,\ a^4$ für $a\in[0,1],\ 1$ für $a>1$

FS22 - Aufgabe 3B:

Die Zufallsgrösse X nehme genau (also nur diese) folgende Werte mit folgenden Wahrscheinlichkeiten an: P[X=1] = 0.1, P[X=2] = 0.3, P[X=3] = 0.2, P[X=4] = 0.2, P[X=5] = a.

- a) Berechnen Sie a und geben Sie den Median an.
- b) Berechnen Sie den Erwartungswert und die Varianz.
- c) Berechnen Sie $P[X^2 + 1 \le 5]$.
- d) Sei f(x) eine streng monotone Funktion. Geben Sie als Funktion von f den Median von Y := f(X) an.

Lösung:

a)
$$a=0.2,$$
 Median ist 3 b) $E[X]=3.1,\ V(X)=1.69$ c) $P[-2\leq X\leq 2]=0.4$ d) der Median ist $f(3)$

FS22 - Aufgabe 3A:

Die Zufallsgrösse X nehme genau (also nur diese) folgende Werte mit folgenden Wahrscheinlichkeiten an: P[X=1] = 0.2, P[X=2] = 0.2, P[X=3] = 0.2, P[X=4] = 0.1, P[X=5] = a.

- a) Berechnen Sie a und geben Sie den Median an.
- b) Berechnen Sie den Erwartungswert und die Varianz.
- c) Berechnen Sie $P[X^2 1 \le 3]$.
- d) Sei f(x) eine streng monotone Funktion. Geben Sie als Funktion von f den Median von Y := f(X) an.

a)
$$a=0.3$$
, Median ist 3 b) $E[X]=3.1$, $V(X)=2.29$ c) $P[-2 \le X \le 2]=0.4$ d) der Median ist $f(3)$

Rep-FS21 - Aufgabe 3:

Die Zufallsgrösse X habe Dichtefunktion $f(x) = K(1-x^2)$ auf [-1,1] und sei 0 sonst. Berechnen Sie:

- a) *K*.
- b) E(X).
- c) V(X) und sd(X).
- d) $F_X(a)$.

Lösung:

a)
$$K=\frac{3}{4}$$
 b) $E[X]=0$ c) $V[X]=\frac{1}{5},\ sd[X]=\sqrt{\frac{1}{5}}$ d) $F_X(a)=0$ für $a<-1,\ -\frac{a^3}{4}+\frac{3a}{4}+\frac{1}{2}$ für $a\in[-1,1],\ 1$ für $a>1$

FS21 - Aufgabe 3B:

Die Zufallsgrösse X nehme folgende Werte an: P[X=1]=1/3, P[X=2]=P[X=3]=1/6, P[X=4]=1/3.

- a) Berechnen Sie E[X] geben Sie auch den Median an.
- b) Berechnen Sie V[X] und sd[X].
- c) Berechnen Sie die Verteilungsfunktion.
- d) Welches ist das kleinste a, sodass $P[X \le a] \ge 0.75$.

Lösung:

```
a) E[X]=2.5=\frac{2+3}{2}, Median ist auch 2.5 (da symmetrische Verteilung) b) V[X]=\frac{19}{12}=1.5833,\ sd[X]=\sqrt{19/12}=1.2583 c) F(a)=0 falls a<1,\ \frac{1}{3} falls a\in[1,2),\ \frac{3}{6} falls a\in[2,3),\ \frac{4}{6} falls a\in[3,4),\ 1 falls a>4 d) a=4
```

FS21 - Aufgabe 3A:

Die Zufallsgrösse X nehme folgende Werte an: P[X=0]=1/3, P[X=1]=P[X=2]=1/6, P[X=3]=1/3.

- a) Berechnen Sie ${\cal E}[X]$ - geben Sie auch den Median an.
- b) Berechnen Sie V[X] und sd[X].
- c) Berechnen Sie die Verteilungsfunktion.
- d) Welches ist das kleinste a, sodass $P[X \le a] \ge 0.75$.

```
a) E[X]=1.5=\frac{1+2}{2}, Median ist auch 1.5 (da symmetrische Verteilung) b) V[X]=\frac{19}{12}=1.5833,\ sd[X]=\sqrt{19/12}=1.2583 c) F(a)=0 falls a<0,\ \frac{1}{3} falls a\in[0,1),\ \frac{3}{6} falls a\in[1,2),\ \frac{4}{6} falls a\in[2,3),\ 1 falls a>3 d) a=3
```

Rep-FS20 - Aufgabe 3:

Die Zufallsgrösse X habe Dichtefunktion $f(x) = Kx^2$ auf [0,4] und sei 0 sonst. Berechnen Sie:

- a) *K*.
- b) E[X].
- c) Berechnen Sie V[X] und sd[X].
- d) den Median von X.
- e) $F_X(a)$.
- f) $P[X^2 \le 9.5]$.

Lösung:

a)
$$K=\frac{3}{64}$$
 b) $E[X]=3$ c) $V[X]=\frac{3}{5},\ sd[X]=\sqrt{3/5}$ d) Median = $\sqrt[3]{32}=3.1748$ e) $F_X(a)=0$ für $a<0,\ \frac{1}{64}a^3$ für $0\leq a\leq 4,\ 1$ für $a>4$ f) $F(\sqrt{9.5})-0=0.4575$

FS20 - Aufgabe 6a:

Die Zufallsgrösse X habe Dichtefunktion f(x) = Kx auf [3,5] und sei 0 sonst.

- a) Berechnen Sie K.
- b) Berechnen Sie E[X].
- c) Berechnen Sie V[X].
- d) Berechnen Sie $P[X \in [3, 3.5]]$.

Lösung:

a)
$$K = 0.125$$
 b) $E[X] = \frac{49}{12}$
c) $V[X] = 17 - (49/12)^2 = \frac{47}{144}$
d) $\int_3^{3.5} 0.125x \ dx = \frac{13}{64}$

FS20 - Aufgabe 6b:

Die Zufallsgrösse X habe Dichtefunktion $f(x) = Kx^2$ auf [-2, 1] und sei 0 sonst.

- a) Berechnen Sie K.
- b) Berechnen Sie E[X].
- c) Berechnen Sie V[X].
- d) Berechnen Sie $P[X \in [0, 1.5]]$.

a)
$$K = \frac{1}{3}$$
 b) $E[X] = -\frac{5}{4}$
c) $V[X] = \frac{33}{15} - (-\frac{5}{4})^2 = \frac{51}{80}$
d) $\int_0^1 \frac{1}{3} x^2 dx = \frac{1}{9}$

FS20 - Aufgabe 6c:

Die Zufallsgrösse X habe Dichtefunktion $f(x) = K(x-2)^2$ auf [-2,1] und sei 0 sonst.

- a) Berechnen Sie K.
- b) Berechnen Sie E[X].
- c) Berechnen Sie V[X].
- d) Berechnen Sie $P[X \in [0, 1.5]]$.

Lösung:

a)
$$K = \frac{1}{21}$$
 b) $E[X] = -\frac{87}{84}$ c) $V[X] = \frac{8}{5} - (-\frac{87}{84})^2 = \frac{2067}{3920} \approx 0.5273$ d) $\int_0^1 \frac{1}{21} (x-2)^2 \ dx = \frac{7}{63}$

FS20 - Aufgabe 6d:

Die Zufallsgrösse X habe Dichtefunktion f(x) = K|x+1| auf [-2,1] und sei 0 sonst.

- a) Berechnen Sie K.
- b) Berechnen Sie E[X].
- c) Berechnen Sie V[X].
- d) Berechnen Sie $P[X \in [0, 1.5]]$.

Lösung:

$$\begin{array}{ccc} \text{a) } K=\frac{2}{5} & \text{b) } E[X]=-\frac{1}{15} \\ \text{c) } V[X]=\frac{5}{6}-(-\frac{1}{15})^2=\frac{373}{450}\approx 0.82889 \\ & \text{d) } \int_0^1\frac{2}{5}|x+1|\ dx=\frac{3}{5} \end{array}$$

FS20 - Aufgabe 6e:

Die Zufallsgrösse X habe Dichtefunktion $f(x) = K(x^2 - x)$ auf [0, 1] und sei 0 sonst.

- a) Berechnen Sie K.
- b) Berechnen Sie E[X].
- c) Berechnen Sie V[X].
- d) Berechnen Sie $P[X \in [0.5, 1.5]]$.

a)
$$K = -6$$
 b) $E[X] = \frac{1}{2}$
c) $V[X] = \frac{3}{10} - (\frac{1}{2})^2 = \frac{1}{20}$
d) $\int_{0.5}^{1} -6(x^2 - x) dx = \frac{1}{2}$

Rep-FS19 - Aufgabe 3:

Die Zufallsgrösse X habe Wahrscheinlichkeitsfunktion P[X=0]=0.2, P[X=1]=0.3, P[X=2]=0.3 und P[X=3]=0.2. Berechnen Sie

- a) E[X].
- b) V[X] und sd[X].
- c) $F_X(a)$
- d) $P[X^2 \le 8.5]$.

Lösung:

a)
$$E[X]=1.5$$
 b) $V[X]=1.05,\ sd[X]\approx 1.0247$ c) $F_X(a)= \begin{cases} 0 & a<0\\ 0.2 & a\in[0,1)\\ 0.5 & a\in[1,2) & \text{d})\ 0.8\\ 0.8 & a\in[2,3)\\ 1.0 & 3\leq a \end{cases}$

FS19 - Aufgabe 3:

Die Zufallsgrösse X habe Dichtefunktion $f(x) = Kx^3$ auf [0, 2] und sei 0 sonst.

- a) Berechnen Sie K.
- b) Berechnen Sie E[X].
- c) Berechnen Sie V[X] und sd[X].
- d) Berechnen Sie $P[X \in [1, 1.5]]$.

Lösung:

a)
$$K=1/4$$
 b) $E[X]=8/5$ c) $V[X]=8/75,\ sd[X]=\sqrt{8/75}\approx 0.33$ d) $65/256$

Rep-FS18 - Aufgabe 3:

X habe auf [0, 10] Dichte f(x) = Kx mit K > 0 und sei sonst 0.

- a) Berechnen Sie K.
- b) Berechnen Sie den Erwartungswert und den Median.
- c) Berechnen Sie die Varianz und Standardabweichung
- d) Was ist der Median von $X^2 + 1$?

a)
$$K = \frac{1}{50}$$
 b) $E(X) = 6.6\overline{6}$, $Median = \sqrt{50}$ c) $V(X) = 5.\overline{5}$, $sd(X) = \sqrt{5.\overline{5}}$ d) $Median \ von \ (X^2 + 1) = 51$

FS18 - Aufgabe 3:

Die Zufallsgrösse X habe Verteilung: P[X=-1]=0.1, P[X=1]=0.1, P[X=2]=0.5 und P[X=5]=0.3.

- a) Berechnen Sie E[X].
- b) Berechnen Sie V[X] und sd[X].
- c) Berechnen Sie Erwartungswert und Varianz von X^2 ?
- d) Berechnen Sie $P[e^X \in [7, 8]]$.

Lösung:

a)
$$E[X] = 2.5$$
 b) $V[X] = 3.45$, $sd[X] \approx 1.857$ c) $E[X^2] = 9.7$, $V[X^2] = 101.61$ d) 0.5

Rep-FS17 - Aufgabe 3:

X nehme folgende Werte mit folgenden Wahrscheinlichkeiten an:

$$P[X = 0] = 0.2, P[X = 2] = 0.2, P[X = 4] = 0.2, P[X = 6] = 0.4.$$

- a) Berechnen sie den Erwartungswert und den Median.
- b) Berechnen Sie Varianz und Standardabweichung.
- c) Was ist der Median von $\sqrt{X} 1$?
- d) Geben Sie die Verteilung von $X^2 + 2$ in einer Tabelle an.

Lösung:

a)
$$E = 3.6$$
, Median = 4 b) $V = 5.44$, $sd = 2.33$ c) Median = 1 d) $\frac{x_i^2 + 2}{p_i}$ $\frac{2}{0.2}$ $\frac{6}{0.2}$ $\frac{18}{0.2}$ $\frac{38}{0.4}$

FS17 - Aufgabe 3:

Sei X eine Zufallsgrösse mit folgender Verteilung: P[X=0]=0.3, P[X=1]=0.3, P[X=2]=0.3, P[X=3]=0.1.

- a) Berechnen Sie E[X].
- b) Berechnen Sie V[X] und sd[X].
- c) Berechnen Sie Erwartungswert und Varianz von X + 1.
- d) Berechnen Sie die Varianz von X^2 .

a)
$$E[X] = 1.2$$
 b) $V[X] = 0.96$, $sd[X] = 0.9798$ c) $E[X+1] = 2.2$, $V[X+1] = 0.96$ d) $V[X^2] = 7.44$

Rep-FS16 - Aufgabe 3:

Sei X eine Zufallsgrösse mit Dichte f(x). Die Dichte ist lediglich auf [0, 10] ungleich Null. Dort hat sie die Form f(x) = Kx + c, wo K und c je streng grösser 0 sind.

a) Welcher Zusammenhang muss zwischen K und c gelten?

In den jetzt folgenden Teilaufgaben können Sie einen Ausdruck in K und c stehen lassen.

- b) Berechnen Sie die Verteilungsfunktion von X.
- c) Wie gross ist $P[X \leq 5]$?
- d) Wie sind Erwartungswert, Varianz und Standardabweichung von X?
- e) Berechnen Sie auch den Median von X.

Lösung:
 a)
$$50K + 10c = 1$$
 b) $F(x) = \begin{cases} 0 & x < 0 \\ K/2x^2 + cx & 0 \le x \le 10 \end{cases}$ c) $12.5K + 5c$ d) $\mu = 333.\overline{3}K + 50c$, $\sigma^2 = 2500K + 333.\overline{3}c - \mu^2$, $\sigma = \sqrt{\sigma^2}$ e) Median $= \frac{-c + \sqrt{c^2 + K}}{K}$

FS16 - Aufgabe 3:

Sei X die Augenzahl eines fairen Würfels und Y eine davon unabhängige Zufallsgrösse mit folgender Verteilung: P[Y=0]=0.25, P[Y=1]=0.5, P[Y=2]=0.25.

- 1.) Wie ist E[X + Y]?
- 2.) Wie ist V[X+Y]?
- 3.) Berechnen Sie P[X + Y = 8].
- 4.) Wie gross ist $P[X + Y \leq 2]$?

Lösung: 1) 4.5 2) $V[X+Y] \approx 2.917 + 0.5 = 3.417$ 3) $\frac{1}{24}$

Rep-FS15 - Aufgabe 3:

Sei X eine Zufallsgrösse mit Dichte f(x). Die Dichte ist lediglich auf [0,10] ungleich Null, auf dem Intervall [0,5] konstant und auf (5,10] ebenfalls konstant. Von 0 bis 5 ist die Dichte halb so gross wie ab 5 bis 10.

- a) Geben Sie die Dichtefunktion und die Verteilungsfunktion vollständig an.
- b) Wie sind Erwartungswert, Varianz und Standardabweichung von X?
- c) Wie gross ist $P[X \in [4, 7]]$?
- d) Berechnen Sie den Median von X.

Lösung: $\mathbf{a}) \ f(x) = \begin{cases} 0 & x < 0 \\ 2/30 & x \in [0, 5] \\ 4/30 & x \in (5, 10] \\ 0 & x > 10 \end{cases} F(x) = \begin{cases} 0 & x < 0 \\ x/15 & x \in [0, 5] \\ (2x - 5)/15 & x \in (5, 10] \\ 1 & x > 10 \end{cases}$ $\mathbf{b}) \ \mathbf{E}(X) = \frac{175}{3}, \ \mathbf{V}(X) = 7.63\overline{8}, \ \mathrm{sd}(X) = 2.764 \quad \mathbf{c}) \ 1/3 \quad \mathbf{d}) \ 6.25$

FS15 - Aufgabe 3:

X und Y seien je die Augenzahlen von unabhängigen Würfen mit fairen Würfeln (also total 2 faire Würfel).

- 1.) Wie ist E[X + Y]?
- 2.) Wie ist V[X+Y]?
- 3.) Wie ist die Verteilung von X + Y? Geben Sie dazu eine Tabelle an.
- 4.) Wie gross ist $P[X + Y \le 10]$?

Lösung:

Rep-FS14 - Aufgabe 2:

Sie geben in R den Befehl (rbinom $(1,2,0.5)-1)^2$ ein. Welche theoretische Verteilung hat diese Realisation?

Lösung: Be(0.5)

Rep-FS14 - Aufgabe 3:

Sei X eine Zufallsgrösse mit folgender Wahrscheinlichkeitsfunktion:

$$P[X \ = \ 0] = 0.5, \ P[X \ = \ 1] = 0.3, \ P[X \ = \ 2] = 0.1, \ P[X \ = \ 3] = 0.1.$$

- a) Skizzieren Sie die Verteilungsfunktion von X.
- b) Wie sind Erwartungswert, Varianz und Standardabweichung von X?
- c) Geben Sie die Wahrscheinlichkeitsfunktion von $Y:=\frac{1}{X+1}$ an.
- d) Berechnen Sie E[Y].

Lösung:

a) siehe Musterlösung b) E[X]=0.8, V[X]=0.96, sd[X]=0.9798 c) P[Y=1]=0.5, P[Y=1/2]=0.3, P[Y=1/3]=0.1, P[Y=1/4]=0.1 d) $E[Y]=0.708\overline{3}$

FS14 - Aufgabe 3:

X sei Bin(5, 0.5)-verteilt. Sei Y := X + 1. Der Rest der Aufgabe dreht sich um ebendieses Y.

- 1.) Geben Sie die Wertetabelle für Y an und Skizzieren Sie auch den Graph der Wahrscheinlichkeitsfunktion.
- 2.) Berechnen Sie E[Y], V[Y] und die Standardabweichung.
- 3.) Berechnen Sie $P[Y \leq 5]$.
- 4.) Wie lautet der R-Befehl, wenn Sie eine 10er Stichprobe von Y haben wollen?

Lösung:

1.) $\frac{y_i}{p_i}$ 1 2 3 4 5 6 $\frac{1}{p_i}$ 0.03125 0.15625 0.3125 0.3125 0.15625 0.03125

2.) E(Y) = 3.5, V(Y) = 1.25, SA(Y) = 1.118034 3.) 0.96875 4.) rbinom(10, 5, 0.5) + 1

Rep-FS13 - Aufgabe 3:

Eine Zufallsgrösse X habe auf dem Intervall [-1,3] die Dichtefunktion K|x| mit einer Normierungskonstanten K>0. Ausserhalb sei die Dichte 0.

- a) Geben Sie die Verteilungsfunktion genau an und machen Sie dazu eine präzise, vollständige Skizze.
- b) Berechnen Sie den Erwartungswert E[X].
- c) Berechnen Sie $E[X^2]$.
- d) Berechnen Sie die Varianz und die Standardabweichung dieser Zufallsgrösse.
- e) Wie gross ist $P[X \in [2, 5]]$?

Lösung: $a) \ (K=1/5) \rightarrow F_X(a) = \begin{cases} 0, & a < -1 \\ (1-a^2)/10 & -1 \leq a < 0 \\ (a^2+1)/10 & 0 \leq a < 3 \end{cases}$ $b) \ E(X) = 26/15$ $(a^2+1)/10 \quad 0 \leq a < 3$ $1, \quad 3 \leq a$ $c) \ E(X^2) = 82/20 \quad d) \ V(X) = 1.0956, SA(X) = 1.0467 \quad e) \ P(2 \leq X \leq 5) = 0.5$

FS13 - Aufgabe 3:

Eine Zufallsgrösse X nehme die folgenden 3 Werte mit folgenden Wahrscheinlichkeiten an (mit p(n) := P[X = n]): p(2) = 0.3, p(3) = 0.4, p(5) = 0.3.

- 1. (1 Punkt) Geben Sie die Verteilungsfunktion genau an und machen Sie dazu eine präzise, vollständige Skizze.
- 2. Berechnen Sie den Erwartungswert E[X]..
- 3. Berechnen Sie $E[X^2]$.
- 4. Berechnen Sie die Varianz und die Standardabweichung dieser Zufallsgrösse.

Rep-FS12 - Aufgabe 3:

Eine Zufallsgrösse X nehme die folgenden fünf Werte $\{0, 1, 3, 7, 12\}$ mit Wahrscheinlichkeiten P[X=0]=0.2, P[X=1]=0.2, P[X=3]=0.2, P[X=7]=0.3, P[X=1]=0.1 an.

- 1.) Geben Sie die Verteilungsfunktion genau an und machen Sie dazu eine präzise, vollständige Skizze.
- 2.) Berechnen Sie den Erwartungswert E[X].
- 3.) Berechnen Sie die Varianz und die Standardabweichung dieser Zufallsgrösse.
- 4.) Berechnen Sie $E[\sqrt{X}]$.

 $\textbf{L\"osung:} \qquad \qquad 1.) \ \ F_X(a) = \begin{cases} 0, & a < 0 \\ 0.2, & 0 \leq a < 1 \\ 0.4, & 1 \leq a < 3 \\ 0.6, & 3 \leq a < 7 \\ 0.9, & 7 \leq a < 12 \\ 1, & 12 \leq a \end{cases} \qquad 2.) \ \ E(X) = 4.1 \qquad 3.) \ \ V(X) = 14.29, \\ SA(X) = 3.78 \qquad 4.) \ \ E(\sqrt{X}) \approx 1.686$

FS12 - Aufgabe 3:

Eine Zufallsgrösse X habe Dichte Kx auf [0,5] und sei 0 sonst.

- a) Berechnen Sie K.
- b) Geben Sie die Verteilungsfunktion von X an; machen Sie dazu auch eine exakte Skizze.
- c) Berechnen Sie den Erwartungswert E[X] und den Median.
- d) Berechnen Sie die Varianz und Standardabweichung dieser Zufallsgrösse.
- e) Berechnen Sie P[X > -1.5] und P[X > 4].

Lösung: a) 2/25 b) $F(x) = \begin{cases} 0, & x < 0 \\ \frac{x^2}{25}, & 0 \le x \le 5 \end{cases}$ c) E(X) = 10/3, Median= $\sqrt{25/2} \approx 3.5356$ d) $V(X) = \frac{2}{25} \cdot \frac{1}{4} x^4 \Big|_0^5 - \frac{100}{9} \approx 1.389$, $sd(X) \approx 1.179$ e) P[X > -1.5] = 1, P[X > 4] = 9/25

Rep-FS11 - Aufgabe 3:

Eine Zufallsgrösse X nehme die folgenden drei Werte $\{0,1,2\}$ mit Wahrscheinlichkeiten P[X=0]=0.25, P[X=1]=0.5, P[X=2]=0.25 an.

- a) Geben Sie die Verteilungsfunktion genau an und machen Sie dazu eine präzise, vollständige Skizze.
- b) Berechnen Sie den Erwartungswert E[X].
- c) Berechnen Sie die Varianz und die Standardabweichung dieser Zufallsgrösse.
- d) Berechnen Sie $E[X^3]$.

Lösung: $\mathbf{a}) \ F_X(a) = \begin{cases} 0, & a < 0 \\ 0.25, & 0 \leq a < 1 \\ 0.75, & 1 \leq a < 2 \\ 1, & 2 \leq a \end{cases} \quad \mathbf{b}) \ E(X) = 1$ $\mathbf{c}) \ V(X) = 0.5, \ sd(X) = \sqrt{0.5} \quad \mathbf{d}) \ E(X^3) = 2.5$

FS11 - Aufgabe 3:

Eine Zufallsgrösse X habe Dichte K(3-x) auf [-3,0] und sei 0 sonst.

- a) Berechnen Sie K.
- b) Geben Sie die Verteilungsfunktion von X an; machen Sie dazu auch eine exakte Skizze.
- c) Berechnen Sie den Erwartungswert E[X].
- d) Berechnen Sie die Varianz dieser Zufallsgrösse.
- e) Berechnen Sie P[X > -1.5].
- f) Geben Sie die Dichte von |X| an. Zusatz: Berechnen Sie den Median von X

Lösung:
a)
$$\frac{2}{27}$$
 b) $F(a) = \begin{cases} 0, & a \le -3 \\ \frac{2}{27} \left(\frac{-a^2}{2} + 3a + 13.5 \right), & -3 \le a \le 0 \\ 1, & 0 \le a \end{cases}$
c) $-\frac{5}{3}$ d) $\frac{13}{18}$ e) $F(0) - F(-1.5) = 0.41\overline{6}$ Median ≈ -1.743

Rep-FS10 - Aufgabe 3:

Eine Zufallsgrösse X nehme nur Werte in der Menge [0,5] an und habe dort Dichtefunktion f(x) = K(x+1) mit einer Normierungskonstanten K.

- a) Berechnen Sie das K.
- b) Berechnen Sie die Verteilungsfunktion von X.
- c) Berechnen Sie den Erwartungswert E[X].
- d) Berechnen Sie die Varianz dieser Zufallsgrösse.
- e) Berechnen Sie P[X > 1.5]. Zusatz: Berechnen Sie den Median von X

Lösung: a)
$$K = \frac{2}{35}$$
 b) $F(a) = \begin{cases} 0, & a < 0 \\ \frac{a(a+2)}{35}, & 0 \le a \le 5 \end{cases}$ c) $E[X] = 3.095$ d) 1.73 e) $P[X > 1.5] = 1 - P[X \le 1.5] = 1 - F(1.5) = 0.85$ Median ≈ 3.3

FS10 - Aufgabe 3:

Eine Zufallsgrösse X nehme nur Werte in der Menge $\{0, 2, 4, 6\}$ an und zwar mit folgenden Wahrscheinlichkeiten: wo $p_i = P[X = i]$ sei $p_0 = 0.1, p_2 = 0.1, p_4 = 0.1$.

- a) Berechnen Sie p_6 .
- b) Geben Sie die Verteilungsfunktion von X an; machen Sie dazu auch eine exakte Skizze.
- c) Berechnen Sie den Erwartungswert E[X].
- d) Berechnen Sie die Varianz dieser Zufallsgrösse.
- e) Berechnen Sie P[X > 1.5].

Lösung:
 a)
$$p_6 = 0.7$$
 b) $F(a) = \begin{cases} 0, & a < 0 \\ 0.1, & 0 \le a < 2 \\ 0.2, & 2 \le a < 4 \\ 0.3, & 4 \le a < 6 \\ 1, & 6 \le a \end{cases}$
 c) $E(X) = 4.8$ d) $V(X) = 27.2 - (4.8)^2 = 4.16$ e) 0.9

FS08 - Aufgabe 3:

Eine Zufallsgrösse X nehme nur Werte an aus der Menge $\{0, 5, 10\}$. Mit Wahrscheinlichkeit 0.5 nimmt X den Wert 5 an; die beiden anderen möglichen Werte sind gleichwahrscheinlich.

- 1. Berechnen Sie die Wahrscheinlichkeitsfunktion von X.
- 2. Geben Sie die Verteilungsfunktion von X an; machen Sie dazu auch eine Skizze.
- 3. Berechnen Sie den Erwartungswert $\mathrm{E}[X]$. Geben Sie auch den Median an.
- 4. Berechnen Sie die Varianz dieser Zufallsgrösse.
- 5. Berechnen Sie $P[X^2 \in [20, 120]]$.

Lösung:
 a)
$$p_0 = 0.25, p_5 = 0.5, p_10 = 0.25$$

 b) $F(a) = \begin{cases} 0, & a < 0 \\ 0.25, & 0 \le a < 5 \\ 0.75, & 5 \le a < 10 \\ 1, & 10 \le a \end{cases}$
 d) $V(X) = 37.5 - (5)^2 = 12.5$ e) 0.75

FS07 - Aufgabe 3:

Die berühmte Luchsinger-Zufallsgrösse X nimmt nur Werte in $\{1, 2, 3, 4\}$ an. Die Wahrscheinlichkeitsfunktion ist P[X=1]=0.1, P[X=2]=0.4, P[X=3]=0.4, P[X=4]=0.1.

- a) Berechnen Sie den Erwartungswert dieser Zufallsgrösse. Mit guter Begründung können Sie den Erwartungswert einfach angeben ohne konkrete Rechnung.
- b) Berechnen Sie die Varianz dieser Zufallsgrösse.
- c) Berechnen Sie die Verteilungsfunktion dieser Zufallsgrösse.
- d) Berechnen Sie $P[X \in [2, 5]]$.

Lösung:

a)
$$E(X)=2.5$$
 b) $V(X)=6.9-(2.5)^2=0.65$ c) $F(a)= \begin{cases} 0, & a<1\\ 0.1, & 1\leq a<2\\ 0.4, & 2\leq a<3\\ 0.9, & 3\leq a<4\\ 1, & 4\leq a \end{cases}$ d) 0.9

Probe-FS07 - Aufgabe 3:

Die berühmte Luchsinger-Zufallsgrösse Z nimmt nur Werte auf dem Intervall [1,2] an.

Die Dichte ist dort f(x) = K(2-x), mit einer Normierungskonstanten K.

- a) Berechnen Sie K.
- b) Berechnen Sie den Erwartungswert dieser Zufallsgrösse
- c) Berechnen Sie die Varianz dieser Zufallsgrösse.
- d) Berechnen Sie die Verteilungsfunktion dieser Zufallsgrösse.
- e) Berechnen Sie $P[Z \in [1.5, 5]]$.

a)
$$K = 2$$
 b) $4/3$ c) $1/18$ d) $F_Z(a) = \begin{cases} 0, & a < 1 \\ 4a - a^2 - 3, & 1 \le a \le 2 \\ 1, & 2 < a \end{cases}$ e) 0.25

FS06 - Aufgabe 3:

Die berühmte Luchsinger-Zufallsgrösse Z nimmt nur Werte auf dem Intervall [0,2] an.

Die Dichte ist dort $f(x) = Kx^3$, mit einer Normierungskonstanten K.

- a) Berechnen Sie K.
- b) Berechnen Sie den Erwartungswert dieser Zufallsgrösse.
- c) Berechnen Sie die Varianz dieser Zufallsgrösse.
- d) Berechnen Sie die Verteilungsfunktion dieser Zufallsgrösse.
- e) Berechnen Sie $P[Z \in [1.5, 5]]$.

a)
$$K = 0.25$$
 b) $E(X) = \frac{32}{20} = 1.6$ c) $V(X) = \frac{8}{3} - (1.6)^2 = \frac{8}{75} \approx 0.10667$ d) $F(a) = \begin{cases} 0, & a < 0 \\ \frac{a^4}{16}, & 0 \le a < 2 \\ 1, & 2 \le a \end{cases}$ d) $1 - \frac{(1.5)^4}{16} \approx 0.68$