

MAT182 PVK

Aufgabensammlung

Integrale

Integrale

HS21 - Aufgabe 3b): (Version A)

Berechnen Sie die Stammfunktion $\int x^4 \sqrt{x^5 + 3} \ dx$ und $\int (t+1)\cos(t) \ dt$.

Lösung:

b) $2/15(x^5+3)^{1.5}+C$ $t\sin(t)+\cos(t)+\sin(t)+C$

b) $\int_1^2 \frac{1}{2x} dx = \frac{\ln(2)}{2}$, $u = x^4 \to \frac{1}{8} \ln(16) - 0 = \frac{4 \cdot \ln(2)}{8} = \frac{\ln(2)}{2}$

Rep-HS20 (Sept. 2021) - Aufgabe 1a)

Berechne $\int_{\ln 3}^{\ln 5} e^x dx$.

Lösung: $e^x|_{\ln 3}^{\ln 5} = 5 - 3 = 2$

Rep-HS20 (Sept. 2021) - Aufgabe 1d)

Berechnen Sie $\int \frac{3x^2}{\sqrt{9-2x^3}} dx$.

Lösung: $-\sqrt{9-2x^3}+C$

HS19 - Aufgabe 3b):

Berechnen Sie $\int_{1}^{2} \frac{x^3}{2x^4} dx$ einmal mit anfänglichem Kürzen, dann mit der Substitutionsregel, ohne anfängliches Kürzen.

Wir wollen die Substitution explizit sehen.

Rep-HS18 - Aufgabe 4:

Lösung:

b) Berechnen Sie $\int_{0}^{4} (x^{2} + x)^{5} (2x + 1) dx$

Lösung: b) $\frac{1}{6} \cdot (20)^6$

HS18 - Aufgabe 5:

Berechnen Sie

a) $\int_0^{\pi/6} \cos(2t + \pi/6)dt$. explizit ohne Taschenrechner.

Wir wollen am Schluss eine Zahl sehen und keine trigonometrischen Ausdrücke mehr.

- b) Berechnen Sie $\int_0^{\pi/2} \frac{\sin(x)}{1 + \cos(x)} dx.$
- c) Berechnen Sie das Volumen des Rotationskörpers, der entsteht, wenn man die Funktion $f(x) = x^2$ im Intervall [3, 4] um die x-Achse rotieren lässt.

Lösung:

a) 0.25 b)
$$\ln(2)$$
 c) $\pi/5(4^5 - 3^5) = \frac{781\pi}{5}$

Rep-HS17 - Aufgabe 5:

- a) Berechnen Sie $\int_0^1 \frac{x^2}{5x^3+7} dx$. Wir wollen die einzelnen Schritte explizit sehen!
- b) Berechnen Sie $\int_0^1 2xe^{-4x}dx$. Wir wollen die einzelnen Schritte explizit sehen!

Lösung:

a)
$$\frac{2}{15}(\sqrt{12} - \sqrt{7})$$
 b) $\frac{1}{8} - \frac{5}{8}e^{-4}$

HS17 - Aufgabe 4:

Berechnen Sie

a)
$$\int_0^2 x^2 \sqrt{x^3 + 5} dx$$
.

b)
$$\int (12x^5 - 2)e^{x^6 - x}dx$$
.

Lösung:

a)
$$\frac{2}{9} \left(13^{3/2} - 5^{3/2} \right)$$
 b) $2e^{x^6 - x} + C$

Rep-HS16 - Aufgabe 5:

- a) Berechnen Sie $\int_0^1 \sqrt{x} dx$.
- b) Berechnen Sie die Fläche, die von der y-Achse, der Geraden y=1 und dem Graphen der Funktion x^2 eingeschlossen wird. Hinweis: Aufgabe a) anschauen, dann geht es ohne Rechnung!

Lösung:

a) $\frac{2}{3}$ b) $\frac{2}{3}$

Rep-HS16 - Aufgabe 4:

b) Berechnen Sie $\int_0^1 \frac{1}{(2+3x)^2} dx$.

Lösung:

HS16 - Aufgabe 4:

- a) Berechnen Sie $\int_0^2 e^{1-x} dx$.
- b) Berechnen Sie $\int_2^4 \frac{1}{\sqrt{x^2 4}} dx$.

Formen Sie am Schluss so weit um, wie es ohne Taschenrechner geht.

c) Berechnen Sie $\int_{-2}^{-1} \frac{1}{(x-1)} dx$.

Formen Sie am Schluss so weit um, wie es ohne Taschenrechner geht.

Lösung:

a)
$$e - e^{-1}$$
 b) $\ln(4 + \sqrt{12}) - \ln(2) \left(= \ln(2 + \sqrt{3}) \right)$ c) $\ln(2) - \ln(3) = \ln\left(\frac{2}{3}\right)$

Hinweis:

Für mehr alte Integral-Prüfungsaufgaben (oder Sammlung zu Substitutionsmethode, Partielle Integartion) benutz das Zwischenkurs 2 Aufgabenmaterial (bzw. schreibt mir eine Mail falls du es brauchst:)