

## MAT141 PVK

# Aufgaben mit komplexen Zahlen

(von Vorgängern von Luchsinger)

Generelle Empfehlung: Worksheet 6 + Worksheet 10 !!!

#### Inhaltsverzeichnis:

| • Aufgaben mit komplexen Zahlen: <b>Determinante und Inverse</b> | Seite | 2  |
|------------------------------------------------------------------|-------|----|
| • Aufgaben mit komplexen Zahlen: Lineare Gleichungssysteme       | Seite | 5  |
| • Aufgaben mit komplexen Zahlen: Linear unabhängig und Basis     | Seite | Ć  |
| • Aufgaben mit komplexen Zahlen: Eigenwerte und Eigenvektoren    | Seite | 12 |
| • Aufgaben mit komplexen Zahlen: <b>Diagonalisieren</b>          | Seite | 15 |
| • Aufgaben mit komplexen Zahlen: Zeige dass / Prüfe ob           | Seite | 19 |
| Aufgaben mit kompleyen Zahlen: DGL-Systeme                       | Seite | 25 |

## Determinante und Inverse mit komplexen Zahlen

## ${ m HS15}$ Probeprüfung Aufgabe 2

i) Berechne die Determinante von

$$\left( \begin{array}{cccc} i & 0 & 1 \\ -1 & 1 & -1 \\ 1+i & -1+i & 1-i \end{array} \right)^4.$$

iii) Bestimme die Nullstellen von  $p(z) = z^4 - i$ .

Lösung: i) 16 iii)  $e^{\pi/8 + (j-1) \cdot \pi/2}$ ,  $1 \le j \le 4$ 

### HS18 Uebungen Serie 6 Aufgabe 4b

Berechne die Determinante für folgende Matrizen. Gib an, ob sie regulär sind und falls ja, berechne die Inverse.

$$A = \begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix} \qquad B = \begin{pmatrix} 1+i & 1 \\ i & 1-i \end{pmatrix} \qquad C = \begin{pmatrix} 1 & i & 2 \\ 2 & 1+2i & 7 \\ 1 & 1+i & 6 \end{pmatrix} \qquad D = \begin{pmatrix} 0 & i & 2 \\ 2 & 1+2i & 8 \\ 2 & 1+i & 6 \end{pmatrix}$$

Lösung:  $\det(A) = 0 \quad \det(B) = 2 - i \rightarrow B^{-1} = \frac{1}{2-i} \begin{pmatrix} 1 - i & -1 \\ -i & 1 + i \end{pmatrix}$   $\det(C) = 1 \rightarrow C^{-1} = \begin{pmatrix} -1 + 5i & 2 - 4i & -2 + 3i \\ -5 & 4 & -3 \\ 1 & -1 & 1 \end{pmatrix} \quad \det(D) = 0$ 

## Lösung HS15 -Probeprüfung - Aufgabe 2

## HS15 - Probeprüfung - Aufgabe 2a)

(i) Berechne die Determinante von

$$\begin{pmatrix} i & 0 & 1 \\ -1 & 1 & -1 \\ 1+i & -1+i & 1-i \end{pmatrix}^4.$$

///// By expanding  $\det(A)$  with respect to the first row one computes  $\det(A) = i((1-i) + (-1+i)) + 1(1-i-1-i) = -2i$  and  $\det(A^4) = \det(A)^4 = 16$ . /////

## HS15 - Probeprüfung - Aufgabe 2c)

(iii) Bestimme die Nullstellen von  $p(z) = z^4 - i$ .

///// The solutions of  $z^4=i=e^{i\frac{\pi}{2}}$  are given by

$$z_i = e^{i\psi_j}, j \in \{0,...,3\}$$
 with  $\psi_j = \frac{\pi}{8} + j(\frac{\pi}{2}).$  /////

### Lösung HS18 - Serie 6 - Aufgabe 4 - Fortsetzung

The system has a free parameter, say  $z_3$ . Then, we get that

$$z_2 = \frac{1 - 2i + 3z_3}{4 + 2i}$$

and

$$2z_1 = i + (2+i)z_2 - z_3 = i + (1-2i+3z_3)/2 - z_3 = \frac{1+z_3}{2}$$

so that the set of solutions is

$$L=\left\{\left(\frac{1+z_3}{4},\frac{1-2i+3z_3}{4+2i},z_3\right),z_3\in\mathbb{C}\right\}.$$

(iv) The extended coefficient matrix is

$$\begin{pmatrix} 1 & i & 0 & 0 \\ 0 & 4i & -7 & 0 \\ 0 & -5 & -9i & -1 \end{pmatrix} \xrightarrow{II \to 5II}_{III \to 4iIII} \begin{pmatrix} 1 & i & 0 & 0 \\ 0 & 20i & -35 & 0 \\ 0 & -20i & 36 & -1 \end{pmatrix} \xrightarrow{III + II}_{\sim} \begin{pmatrix} 1 & i & 0 & 0 \\ 0 & 20i & -35 & 0 \\ 0 & 0 & 1 & -4i \end{pmatrix}$$

which yields the set of solutions

$$L = \{(7i, -7, -4i)\}.$$

(b) We have  $\det A = i(-i)-1 = 0$ , hence this matrix is not regular. Then,  $\det B = (1+i)(1-i)-i = 2-i$ . Hence, B is invertible, and we can use the usual formula for the inverse and

$$B^{-1} = \frac{1}{2-i} \begin{pmatrix} 1-i & -1 \\ -i & 1+i \end{pmatrix}.$$

For the  $3 \times 3$  matrices we use row operations. For C, we have

$$C = \begin{pmatrix} 1 & i & 2 & 1 & 0 & 0 \\ 2 & 1 + 2i & 7 & 0 & 1 & 0 \\ 1 & 1 + i & 6 & 0 & 0 & 1 \end{pmatrix}^{II-2I}_{III-I} \begin{pmatrix} 1 & i & 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & 1 & 0 \\ 0 & 1 & 4 & -1 & 0 & 1 \end{pmatrix}$$

$$III-II \begin{pmatrix} 1 & i & 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix}$$

so C is regular and the determinant of C is 1. Continuing, we get

$$\begin{pmatrix} 1 & i & 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix}^{II-3III} \begin{pmatrix} 1 & i & 0 & -1 & 2 & -2 \\ 0 & 1 & 0 & -5 & 4 & -3 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix}^{II-3III} \begin{pmatrix} 1 & i & 0 & -1 & 2 & -2 \\ 0 & 1 & 0 & -5 & 4 & -3 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix}^{I-iII} \begin{pmatrix} 1 & 0 & 0 & -1 + 5i & 2 - 4i & -2 + 3i \\ 0 & 1 & 0 & -5 & 4 & -3 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix}$$

so the inverse of C is

$$C^{-1} = \begin{pmatrix} -1+5i & 2-4i & -2+3i \\ -5 & 4 & -3 \\ 1 & -1 & 1 \end{pmatrix}.$$

Similarly, for D we have

$$\begin{split} D = \left( \begin{array}{ccc|c} 0 & i & 2 & 1 & 0 & 0 \\ 2 & 1+2i & 8 & 0 & 1 & 0 \\ 2 & 1+i & 6 & 0 & 0 & 1 \end{array} \right) \stackrel{III \leftrightarrow I}{\leadsto} \left( \begin{array}{ccc|c} 2 & 1+i & 6 & 0 & 0 & 1 \\ 0 & i & 2 & 1 & 0 & 0 \\ 2 & 1+2i & 8 & 0 & 1 & 0 \end{array} \right) \\ \stackrel{III-I}{\leadsto} \left( \begin{array}{ccc|c} 2 & 1+i & 6 & 0 & 0 & 1 \\ 0 & i & 2 & 1 & 0 & 0 \\ 0 & i & 2 & 0 & 1 & -1 \end{array} \right) \stackrel{III-II}{\leadsto} \left( \begin{array}{ccc|c} 2 & 1+i & 6 & 0 & 0 & 1 \\ 0 & i & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & -1 \end{array} \right) \end{split}$$

hence D is not regular, i.e. det(D) = 0.

## LGS mit komplexen Zahlen

### HS18 Uebungen Serie 6 Aufgabe 4a)

Löse folgendes komplexe lineare Gleichungssystem:

(i) 
$$z_1 + iz_2 = 2$$
  
 $(1+i)z_1 + (i-1)z_2 = 2i+2$ 

(ii) 
$$iz_1 + z_2 = 1$$
  
 $z_1 + iz_2 = i$ 

(iii) 
$$2z_1 - (2+i)z_2 + z_3 = i$$

(iv) 
$$4iz_2 - 7z_3 = 0$$

(iii) 
$$4z_1 - iz_3 = 1$$

$$4iz_2 - 7z_3 = 0$$
$$-5z_2 - 9iz_3 = 1$$

 $z_1 + iz_2 = 0$ 

Lösung:

## HS17 Uebungen Serie 6 Aufgabe 4

- (a) Für welche Werte von  $a \in \mathbb{C}$  hat das folgende komplexe lineare Gleichungssystem
- (i) keine Lösung?
- (ii) genau eine Lösung?
- (iii) unendlich viele Lösungen?

$$z_1 + iz_2 + (1 - i)z_3 = 0$$

$$ia^2z_1 + z_2 + (1+i)a^2z_3 = a-i$$

$$iz_1 - z_2 + iz_3 \qquad \qquad = \quad a + i$$

(b) Lösen Sie das Gleichungssystem für a=3i.

Lösung:

(a) (i) 
$$a = -i$$
 (ii)  $a \neq \pm i$  (iii)  $a = +i$ 

(b) 
$$L = \{(15/4 + 4i, -i/4, -4i)\}$$

## Lösung HS18 - Serie 6 - Aufgabe 4

## Exercise 4 (Complex linear systems and matrices)

(a) Give the sets of solutions of the following systems of linear equations<sup>1</sup>:

(i) 
$$\begin{cases} z_1+iz_2 &=2\\ (1+i)z_1+(i-1)z_2 &=2i+2 \end{cases}$$

(ii) 
$$\begin{cases} iz_1 + z_2 &= 1 \\ z_1 + iz_2 &= i \end{cases}$$

(iii) 
$$\begin{cases} 2z_1 - (2+i)z_2 + z_3 &= i \\ 4z_1 - z_3 &= 1 \end{cases}$$

(iv) 
$$\begin{cases} z_1 + iz_2 &= 0\\ 4iz_2 - 7z_3 &= 0\\ -5z_2 - 9iz_3 &= 1 \end{cases}$$

(b) Compute the determinant of the following matrices. Decide whether they are regular. If so, compute the inverse matrix.

$$A = \begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix} \qquad B = \begin{pmatrix} 1+i & 1 \\ i & 1-i \end{pmatrix} \qquad C = \begin{pmatrix} 1 & i & 2 \\ 2 & 1+2i & 7 \\ 1 & 1+i & 6 \end{pmatrix} \qquad D = \begin{pmatrix} 0 & i & 2 \\ 2 & 1+2i & 8 \\ 2 & 1+i & 6 \end{pmatrix}$$

Solution:

- (a) Also for linear systems with complex coefficients we can use the Gauss algorithm as before.
  - (i) The extended coefficient matrix is

$$\left(\begin{array}{cc|c}1 & i & 2\\ (1+i) & (i-1) & 2i+2\end{array}\right)_{II-(1+i)I}\left(\begin{array}{cc|c}1 & i & 2\\ 0 & 0 & 0\end{array}\right)$$

Hence the set of solutions has a free parameter, say  $z_2$ , and by equation I we get  $z_1 = 2 - iz_2$ , so that the set of solutions is

$$L = \{(2 - iz_2, z_2), z_2 \in \mathbb{C}\}.$$

Notice that since we consider complex solutions now, the parameter  $z_2$  can take any *complex* value.

(ii) The extended coefficient matrix is

$$\left(\begin{array}{cc|c}i&1&1\\1&i&i\end{array}\right) \overset{\longrightarrow}{_{II+iI}} \left(\begin{array}{cc|c}i&1&1\\0&2i&2i\end{array}\right)$$

Hence we get  $z_2 = i$  and then from the first equation  $z_1 = 1$ , so the set of solutions is

$$L = \{(0,1)\}.$$

(iii) The extended coefficient matrix is

$$\left(\begin{array}{cc|cc} 2 & -(2+i) & 1 & i \\ 4 & 0 & -1 & 1 \end{array}\right) \overset{\longrightarrow}{_{II-2I}} \left(\begin{array}{cc|cc} 2 & -(2+i) & 1 & i \\ 0 & (4+2i) & -3 & 1-2i \end{array}\right)$$

<sup>&</sup>lt;sup>1</sup>We now use  $z_1, z_2, \ldots$  as variables to emphasize that solutions can be complex

### Lösung HS18 - Serie 6 - Aufgabe 4 - Fortsetzung

The system has a free parameter, say  $z_3$ . Then, we get that

$$z_2 = \frac{1 - 2i + 3z_3}{4 + 2i}$$

and

$$2z_1 = i + (2+i)z_2 - z_3 = i + (1-2i+3z_3)/2 - z_3 = \frac{1+z_3}{2}$$

so that the set of solutions is

$$L=\left\{\left(\frac{1+z_3}{4},\frac{1-2i+3z_3}{4+2i},z_3\right),z_3\in\mathbb{C}\right\}.$$

(iv) The extended coefficient matrix is

$$\begin{pmatrix} 1 & i & 0 & 0 \\ 0 & 4i & -7 & 0 \\ 0 & -5 & -9i & -1 \end{pmatrix} \xrightarrow{II \to 5II}_{III \to 4iIII} \begin{pmatrix} 1 & i & 0 & 0 \\ 0 & 20i & -35 & 0 \\ 0 & -20i & 36 & -1 \end{pmatrix} \xrightarrow{III + II}_{\sim} \begin{pmatrix} 1 & i & 0 & 0 \\ 0 & 20i & -35 & 0 \\ 0 & 0 & 1 & -4i \end{pmatrix}$$

which yields the set of solutions

$$L = \{(7i, -7, -4i)\}.$$

(b) We have  $\det A = i(-i)-1 = 0$ , hence this matrix is not regular. Then,  $\det B = (1+i)(1-i)-i = 2-i$ . Hence, B is invertible, and we can use the usual formula for the inverse and

$$B^{-1} = \frac{1}{2-i} \begin{pmatrix} 1-i & -1 \\ -i & 1+i \end{pmatrix}.$$

For the  $3 \times 3$  matrices we use row operations. For C, we have

$$C = \begin{pmatrix} 1 & i & 2 & 1 & 0 & 0 \\ 2 & 1 + 2i & 7 & 0 & 1 & 0 \\ 1 & 1 + i & 6 & 0 & 0 & 1 \end{pmatrix}^{II-2I}_{III-I} \begin{pmatrix} 1 & i & 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & 1 & 0 \\ 0 & 1 & 4 & -1 & 0 & 1 \end{pmatrix}$$

$$III-II \begin{pmatrix} 1 & i & 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix}$$

so C is regular and the determinant of C is 1. Continuing, we get

$$\begin{pmatrix} 1 & i & 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix}^{II-3III} \begin{pmatrix} 1 & i & 0 & -1 & 2 & -2 \\ 0 & 1 & 0 & -5 & 4 & -3 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix}^{II-3III} \begin{pmatrix} 1 & i & 0 & -1 & 2 & -2 \\ 0 & 1 & 0 & -5 & 4 & -3 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix}^{I-iII} \begin{pmatrix} 1 & 0 & 0 & -1 + 5i & 2 - 4i & -2 + 3i \\ 0 & 1 & 0 & -5 & 4 & -3 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix}$$

so the inverse of C is

$$C^{-1} = \begin{pmatrix} -1+5i & 2-4i & -2+3i \\ -5 & 4 & -3 \\ 1 & -1 & 1 \end{pmatrix}.$$

Similarly, for D we have

$$\begin{split} D = \left( \begin{array}{ccc|c} 0 & i & 2 & 1 & 0 & 0 \\ 2 & 1+2i & 8 & 0 & 1 & 0 \\ 2 & 1+i & 6 & 0 & 0 & 1 \end{array} \right) \stackrel{III \leftrightarrow I}{\leadsto} \left( \begin{array}{ccc|c} 2 & 1+i & 6 & 0 & 0 & 1 \\ 0 & i & 2 & 1 & 0 & 0 \\ 2 & 1+2i & 8 & 0 & 1 & 0 \end{array} \right) \\ \stackrel{III-I}{\leadsto} \left( \begin{array}{ccc|c} 2 & 1+i & 6 & 0 & 0 & 1 \\ 0 & i & 2 & 1 & 0 & 0 \\ 0 & i & 2 & 0 & 1 & -1 \end{array} \right) \stackrel{III-II}{\leadsto} \left( \begin{array}{ccc|c} 2 & 1+i & 6 & 0 & 0 & 1 \\ 0 & i & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & -1 \end{array} \right) \end{split}$$

hence D is not regular, i.e. det(D) = 0.

## Lösung HS17 - Serie 6 - Aufgabe 4

Exercise 4. (4 points) Consider the following linear system with complex coefficients

$$z_1 + iz_2 + (1 - i)z_3 = 0$$
  
 $ia^2z_1 + z_2 + (1 + i)a^2z_3 = a - i$   
 $iz_1 - z_2 + iz_3 = a + i$ ,

where  $a \in \mathbb{C}$ .

- 1. Use Gaussian elimination to bring it in row echelon form.(1 point)
- 2. Discuss the existence and unicity of solutions according to the values of a. (2 points)
- 3. Solve the system explicitly for a=3i. (1 point)

Solution.

1. By substituting  $R_2 \to R_2 - ia^2R_1$  and  $R_3 \to R_3 - iR_1$  we find

$$\begin{pmatrix} 1 & i & 1-i & 0 \\ ia^2 & 1 & (1+i)a^2 & a-i \\ i & -1 & i & a+i \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & i & 1-i & 0 \\ 0 & 1+a^2 & 0 & a-i \\ 0 & 0 & -1 & a+i \end{pmatrix}.$$

2. For  $a^2+1\neq 0 \leftrightarrow a\neq \pm i$  the coefficient matrix is non singular, hence the solution is unique.

For a = -i the system becomes

$$\begin{pmatrix} 1 & i & 1-i & 0 \\ 0 & 0 & 0 & -2i \\ 0 & 0 & -1 & 0 \end{pmatrix} \,.$$

The second equation reads  $0 \cdot z_2 = -2i$ , so the system has no solution.

For a = i we have

$$\begin{pmatrix} 1 & i & 1-i & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2i \end{pmatrix}\,.$$

The second equation gives  $0 \cdot z_2 = 0$ , thus the system has infinite solutions.

3. For a = 3i the system becomes

$$\begin{pmatrix} 1 & i & 1-i & 0 \\ 0 & -8 & 0 & 2i \\ 0 & 0 & -1 & 4i \end{pmatrix}$$

and the solution is given by

$$L = \left\{ \left( \frac{15}{4} + 4i, -\frac{i}{4}, -4i \right) \right\}$$
.

## linear unabhängig / Basis mit komplexen Zahlen

### HS15 Uebungen Serie 6 Aufgabe 1

a) Entscheide, ob folgende Vektoren in  $\mathbb{C}^3$  linear abhängig sind oder nicht:

$$a^{(1)} = \begin{bmatrix} 1+i \\ 1-i \\ -1+i \end{bmatrix}, \qquad a^{(2)} = \begin{bmatrix} 0 \\ 4-2i \\ -3+5i \end{bmatrix}, \qquad a^{(3)} = \begin{bmatrix} 1+i \\ 0 \\ 3 \end{bmatrix}.$$

b) Für welche komplexen Zahlen  $z\in\mathbb{C}$  verschwindet die Determinante von

$$\begin{bmatrix} 1+2i & 3+4i \\ z & 1-2i \end{bmatrix}^{25}$$

**Lösung:** a) linear unabhängig b)  $z = \frac{3}{5} - \frac{4}{5}i$ 

#### HS17 Uebungen Serie 7 Aufgabe 1

Entscheide, ob folgende Vektoren in  $\mathbb{C}^2$ eine Basis von  $\mathbb{C}^2$ bilden:

(a) 
$$v^{(1)} = \begin{pmatrix} 1+i \\ -1+i \end{pmatrix}, \quad v^{(2)} = \begin{pmatrix} -2+2i \\ -2-2i \end{pmatrix}$$

(b) 
$$v^{(1)} = \begin{pmatrix} 1+i \\ 2-i \end{pmatrix}, \qquad v^{(2)} = \begin{pmatrix} -i \\ 2+2i \end{pmatrix}$$

**Lösung:** (a)  $\det(v^{(1)}, v^{(2)}) = 0 \to \text{linear abhängig} \Rightarrow \text{keine Basis}$  (b)  $\det(v^{(1)}, v^{(2)}) = 1 + 6i \neq 0 \to \text{linear unabhängig} \Rightarrow \text{Basis}$ 

### Lösung HS15 - Serie 6 - Aufgabe 1

(i) Entscheide, ob folgende Vektoren in C³ linear abhängig sind oder nicht:

(i1) 
$$a^{(1)} = \begin{bmatrix} 1 \\ 2+i \\ 1 \end{bmatrix}$$
,  $a^{(2)} = \begin{bmatrix} -1+3i \\ 1+i \\ 3+i \end{bmatrix}$ .

//// The first step of Gauss elimination yields

$$\begin{bmatrix} 1 & -1+3i \\ 2+i & 1+i \\ 1 & 3+i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1+3i \\ 0 & (1+i)-(2+i)(-1+3i) \\ 0 & 4-2i \end{bmatrix} = \begin{bmatrix} 1 & -1+3i \\ 0 & (1+i)-(-5+5i) \\ 0 & 4-2i \end{bmatrix} = \begin{bmatrix} 1 & -1+3i \\ 0 & 6-4i \\ 0 & 4-2i \end{bmatrix},$$

hence the two vectors are C-linearly independent. /////

(i2) 
$$a^{(1)} = \begin{bmatrix} 1+i \\ 1-i \\ -1+i \end{bmatrix}$$
,  $a^{(2)} = \begin{bmatrix} 0 \\ 4-2i \\ -3+5i \end{bmatrix}$ ,  $a^{(3)} = \begin{bmatrix} 1+i \\ 0 \\ 3 \end{bmatrix}$ .

//// The first step of Gauss elimination yields

$$\begin{bmatrix} 1+i & 0 & 1+i \\ 1-i & 4-2i & 0 \\ -1+i & -3+5i & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 4-2i & -1+i \\ 0 & -3+5i & 4-i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 20-10i & -5+5i \\ 0 & -6+10i & 8-2i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 14 & 3+3i \\ 0 & -6+10i & 8-2i \end{bmatrix}$$

and we compute

$$8 - 2i - \frac{1}{14}(3 + 3i)(-6 + 10i) = 8 - 2i - \frac{1}{14}(-48 + 12i) \neq 0.$$

Therefore, the three vectors are C-linearly independent.

Alternatively, one can compute the determinant

$$(1+i)(4-2i)3+(1+i)(1-i)(-3+5i)-((-1+i)(4-2i)(1+i))$$
  
=  $(6+2i)3+2(-3+5i)+2(4-2i)=(18-6+8)+(6+10-4)i=20+12i\neq 0$ . /////

(ii) Für welche komplexen Zahlen  $z \in \mathbb{C}$  verschwindet die Determinante von

$$B = \begin{bmatrix} 1+2i & 3+4i \\ z & 1-2i \end{bmatrix}^{25}$$

//// Clearly,

$$\det B = [(1+2i)(1-2i) - (3+4i)z]^{25} = [5-(3+4i)z]^{25}.$$

Therefore,  $\det B = 0$  if

$$z = \frac{5}{3+4i} = \frac{5(3-4i)}{(3+4i)(3-4i)} = \frac{15-20i}{25} = \frac{3}{5} - \frac{4}{5}i.$$
 /////

## Lösung HS17 - Serie7 - Aufgabe 1

**Exercise 1** (4 points). Decide if the given vectors in  $\mathbb{C}^2$  form a basis of  $\mathbb{C}^2$ .

1.

$$v^{(1)} = \left( \begin{array}{c} 1+\mathrm{i} \\ -1+\mathrm{i} \end{array} \right), \quad v^{(2)} = \left( \begin{array}{c} -2+2\mathrm{i} \\ -2-2\mathrm{i} \end{array} \right).$$

2.

$$v^{(1)} = \begin{pmatrix} 1+\mathrm{i} \\ 2-\mathrm{i} \end{pmatrix}, \quad v^{(2)} = \begin{pmatrix} -\mathrm{i} \\ 2+2\mathrm{i} \end{pmatrix}.$$

Solution.

- 1.  $v^{(2)} = 2i \cdot v^{(1)}$ . Because the two vectors are dependent, the do not form a basis.
- 2. det  $(v^{(1)} \ v^{(2)}) = 1 + 6i \neq 0$ . Therefore, the two vectors are independent and form a basis.

## Eigenwerte und Eigenvektoren mit komplexen Zahlen

## HS15 Uebungen Serie 9 Aufgabe 3

i) Bestimme die Eigenwerte und dazugehörigen Eigenvektoren von  $A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$ .

Finde eine Basis  $[v] = [v^{(1)}, v^{(2)}]$  von  $\mathbb{C}^2$  so dass  $(T_A)_{[v] \to [v]}$  eine Diagonalmatrix ist.

ii) Dieselbe Aufgabe wie in i) für die Matrix  $B = \begin{bmatrix} 1 & 3+i \\ 3-i & 4 \end{bmatrix}$ .

Lösung: i)  $\lambda_1 = 1 - 2i$ ,  $\lambda_2 = 1 + 2i$   $[v] = [v^{(1)}, v^{(2)}] = [(i, 1)^T, (-i, 1)^T]$   $D = \begin{pmatrix} 1 - 2i & 0 \\ 0 & 1 + 2i \end{pmatrix}$ ii)  $z_1 = -1$ ,  $z_2 = 6$   $[v] = [v^{(1)}, v^{(2)}] = [(-\frac{3+i}{2}, 1)^T, (\frac{3+i}{5}, 1)^T]$   $D = \begin{pmatrix} -1 & 0 \\ 0 & 6 \end{pmatrix}$ 

#### HS15 Uebungen Serie 9 Aufgabe 4

Bestimme die Eigenwerte und Eigenräume von folgenden Matrizen.

$$C = \begin{bmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{bmatrix} \qquad D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & -5 \\ 0 & 1 & -2 \end{bmatrix} \qquad F = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$

 $\text{\textbf{L\"osung:}} \qquad \qquad \text{c) EW: } z_1 = \cos(\varphi) + i\sin(\varphi), \ \ z_2 = \cos(\varphi) - i\sin(\varphi) \qquad E_{z_1}(C) = \{a(i,1), a \in \mathbb{C}\}, E_{z_2}(C) = \{a(-i,1), a \in \mathbb{C}\}$   $\text{d) EW: } z_1 = 3, \ \ z_2 = -i, \ \ z_3 = i \qquad E_3(D) = \{a(1,0,0), a \in \mathbb{C}\}, E_{-i}(D) = \{a(0,5,2+i), a \in \mathbb{C}\}, E_i(D) = \{a(0,5,2-i), a \in \mathbb{C}\}$   $\text{f) EW: } z_1 = i, \ \ z_2 = -i \qquad E_i(F) = \{a(1+i,2), a \in \mathbb{C}\}, E_{-i}(F) = \{a(1-i,2), a \in \mathbb{C}\}$ 

## Lösung HS15 - Serie 9 - Aufgabe 3

(i) Bestimme die Eigenwerte und dazugehörige Eigenvektoren von  $A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$ . Finde eine Basis  $[v] = [v^{(1)}, v^{(2)}]$  von  $\mathbb{C}^2$  so dass  $(T_A)_{[v] \to [v]}$  eine Diagonalmatrix ist.

//// We compute

$$\det(A-z) = (1-z)^2 + 4 = z^2 - 2z + 5.$$

Consequently, the eigenvalues are given by

$$z_{\pm} = \frac{2 \pm \sqrt{4 - 20}}{2} = 1 \pm 2i.$$

To determine the eigenvectors we solve  $(A - z_{\pm})x = 0$ . That is for  $z_{-}$ 

$$\begin{bmatrix} 2i & 2 & 0 \\ -2 & 2i & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2i & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

hence we may choose  $v_{-} = (i, 1)$ . Similarly, for  $z_{+}$ ,

$$\begin{bmatrix} -2i & 2 & 0 \\ -2 & -2i & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -2i & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

so we may choose  $v_+ = (-i, 1)$ . Clearly,  $v_+$  and  $v_-$  are  $\mathbb{C}$ -linearly independent. Let  $[v] = [v_-, v_+]$  and note that  $Av_{\pm} = z_{\pm}v_{\pm}$  hence

$$(T_A)_{[\nu] \to [\nu]} = \begin{bmatrix} 1 - 2i & 0 \\ 0 & 1 + 2i \end{bmatrix}.$$
 /////

(ii) Dieselbe Aufgabe wie in (i) für die Matrix  $B = \begin{bmatrix} 1 & 3+i \\ 3-i & 4 \end{bmatrix}$ .

//// We compute the characteristic polynomial to be

$$\det(B-z) = (1-z)(4-z) - (3+i)(3-i) = z^2 - 5z - 6.$$

Therefore,

$$z_{\pm} = \frac{5 \pm \sqrt{49}}{2} = \frac{5 \pm 7}{2}.$$

The eigenvalues thus are  $z_{-}=-1$  and  $z_{+}=6$ . To compute the eigenvectors we solve  $(A-z_{\pm})x=0$ . So for  $z_{-}$ 

$$\begin{bmatrix} 2 & 3+i & 0 \\ 3-i & 5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 3+i & 0 \\ 2 & 3+i & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 3+i & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

hence  $v_{-} = (-\frac{3+i}{2}, 1)$ , and further for  $z_{+}$ 

$$\begin{bmatrix} -5 & 3+i & 0 \\ 3-i & -2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -5 & 3+i & 0 \\ -5 & 3+i & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -5 & 3+i & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

we get  $v_+ = (\frac{3+i}{5}, 1)$ . With  $[v] = [v_-, v_+]$  we obtain

$$(T_B)_{[\nu]\to [\nu]} = \begin{bmatrix} -1 & 0 \\ 0 & 6 \end{bmatrix}. \quad /////$$

## Lösung HS15 - Serie 9 - Aufgabe 4

(iii) 
$$A = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$$
.

///// Since  $\det(A-z) = z^2 - (2\cos\varphi)z + 1$ , we compute for the eigenvalues

$$z_{\pm} = \frac{2\cos\varphi \pm \sqrt{4\cos^2\varphi - 4}}{2} = \cos\varphi \pm i\sin\varphi.$$

To compute the eigenvectors we consider

$$A-z_{\pm} = \begin{bmatrix} \mp \mathrm{i} \sin \varphi & -\sin \varphi \\ \sin \varphi & \mp \mathrm{i} \sin \varphi \end{bmatrix} = \sin \varphi \begin{bmatrix} \mp \mathrm{i} & -1 \\ 1 & \mp \mathrm{i} \end{bmatrix} \rightarrow \sin \varphi \begin{bmatrix} 1 & \mp \mathrm{i} \\ 0 & 0 \end{bmatrix},$$

hence  $v_{\pm} = (\pm i, 1)$  so

 $E_{\cos\varphi-i\sin\varphi} = \{\alpha(-i,1) : \alpha \in \mathbb{C}\}, \qquad E_{\cos\varphi+i\sin\varphi} = \{\alpha(i,1) : \alpha \in \mathbb{C}\}. \quad /////$ 

(iv) 
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & -5 \\ 0 & 1 & -2 \end{bmatrix}$$

//// A straightforward computation shows

$$\det(A-z) = (3-z)((2-z)(-2-z)+5) = (3-z)(z^2+1) = (3-z)(z-i)(z+i).$$

So the eigenvalues are  $z_1=3$ ,  $z_2=-\mathrm{i}$  and  $z_3=\mathrm{i}$ . Clearly,  $v_1=(1,0,0)$  is an eigenvector for  $z_1$  and

$$E_3(A) = {\alpha(1,0,0) : \alpha \in \mathbb{C}}.$$

To proceed, consider

$$\begin{bmatrix} 3+i & 0 & 0 \\ 0 & 2+i & -5 \\ 0 & 1 & -2+i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2+i & -5 \\ 0 & 0 & 0 \end{bmatrix}$$

hence  $v_2 = (0, 5, 2 + i)$  and

$$E_{-i}(A) = {\alpha(0,5,2+i) : \alpha \in \mathbb{C}}.$$

Similarly,

$$\begin{bmatrix} 3-i & 0 & 0 \\ 0 & 2-i & -5 \\ 0 & 1 & -2-i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2-i & -5 \\ 0 & 0 & 0 \end{bmatrix}$$

gives  $v_3 = (0, 5, 2 - i)$  and

$$E_{\mathbf{i}}(A) = \{\alpha(0, 5, 2 - \mathbf{i}) : \alpha \in \mathbb{C}\}.$$
 /////

(vi) \* (bonus)

$$A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$

//// A straightforward computation shows

$$\det(A-z) = (1-z)(-1-z) + 2 = z^2 + 1 = (z+i)(z-i),$$

so the eigenvalues are  $z_{\pm} = \pm i$ . To compute the eigenvectors we consider

$$\begin{bmatrix} 1 \mp i & -1 \\ 2 & -1 \mp i \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 \mp i \\ 0 & 0 \end{bmatrix}$$

hence  $v_+ = (1 \pm i, 2)$  and

$$E_{\pm i}(A) = \{ \alpha(1 \pm i, 2) : \alpha \in \mathbb{C} \}.$$
 /////

## Diagonalisieren mit komplexen Zahlen

#### HS15 Uebungen Serie 10 Aufgabe 1

Sei 
$$A = \begin{bmatrix} 1 & 2i \\ -2i & 1 \end{bmatrix} \in \mathbb{C}^{2x^2}$$
.

- i) Verifiziere, dass A hermitesch ist.
- ii) Bestimme die Eigenwerte von A.
- iii) Finde eine unitäre Matrix S so dass  $S^{-1}AS$  eine Diagonalmatrix ist.

Lösung:

i) 
$$\overline{A^T} = A$$
 ii)  $\lambda_1 = -1, \lambda_2 = 3$ 

iii) 
$$S = \frac{1}{\sqrt{2}}[v^{(1)}\ v^{(2)}]$$
mit  $v^{(1)} = (-i,1)^T,\ v^{(2)} = (i,1)^T$  und  $D = \mathrm{diag}(-1,3)$ 

### HS15 Uebungen Serie 10 Aufgabe 2

Sei A die 3 x 3 Matrix

$$A == \left[ \begin{array}{ccc} 2 & i & 1 \\ -i & 2 & -i \\ 1 & i & 2 \end{array} \right].$$

- i) Verifiziere, dass A hermitesch ist.
- ii) Bestimme die Eigenwerte von A.
- iii) Finde eine unitäre Matrix S so dass  $S^{-1}AS$  eine Diagonalmatrix ist.

Lösung:

i) 
$$\overline{A^T}=A$$
 ii)  $\lambda_1=1=\lambda_2, \lambda_3=4$ 

iii) 
$$S = \frac{1}{\sqrt{2}} [v^{(1)} \ v^{(2)} \ v^{(3)}] \text{ mit } v^{(1)} = \frac{1}{\sqrt{2}} (-i, 1, 0)^T,$$

$$v^{(2)} = \frac{1}{\sqrt{3/2}} (-1/2, i/2, 1)^T, \ v^{(3)} = \frac{1}{\sqrt{3}} (1, -i, 1)^T$$

#### HS18 Uebungen Serie 13 Aufgabe 4

Consider the matrix below

$$A = \left[ \begin{array}{ccc} 3 & -i & 0 \\ i & 3 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

- a) Without computation, argue that A is diagonalizabe.
- b) Find all eigenvalues and corresponding eigenspaces of A.
- c) Find a unitary matrix U such that  $UAU^{-1} = D$  is a diagonal matrix.

Lösung:

a) 
$$A^T = \overline{A}$$
 b)  $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 4$ 

$$E_A(1) = \{(0,0,x_3)^T | x_3 \in \mathbb{C}\}, \quad E_A(2) = \{(ix_2,x_2,0)^T | x_2 \in \mathbb{C}\}, \quad E_A(4) = \{(-ix_2,x_2,0)^T | x_2 \in \mathbb{C}\}$$

$$c) \ v_1 = (0,0,1)^T, v_2 = \left(\frac{i}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right)^T, v_3 = \left(\frac{-i}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right)^T \quad U = (v_1 \ v_2 \ v_3)$$

c) 
$$v_1 = (0, 0, 1)^T, v_2 = \left(\frac{i}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^T, v_3 = \left(\frac{-i}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^T \quad U = (v_1 \ v_2 \ v_3)$$

## Lösung HS15 - Serie 10 - Aufgabe 1

**Aufgabe 1** Sei 
$$A = \begin{bmatrix} 1 & 2i \\ -2i & 1 \end{bmatrix} \in \mathbb{C}^{2 \times 2}$$
.

(i) Verifiziere, dass A hermitesch ist.

//// 
$$\overline{A^{\top}} = \begin{bmatrix} 1 & 2i \\ -2i & 1 \end{bmatrix} = A. \quad /////$$

(ii) Bestimme die Eigenwerte von A.

//// We note that 
$$\chi(z) = (1-z)^2 - 4 = z^2 - 2z - 3$$
 and further compute  $z_{\pm} = \frac{2 \pm \sqrt{4+12}}{2} = 1 \pm 2$ .

Hence  $\lambda_1 = -1$  and  $\lambda_2 = 3$  are the eigenvalues of A. /////

(iii) Finde eine unitäre Matrix S so dass  $S^{-1}AS$  eine Diagonalmatrix ist.

///// Since A is hermitean it suffices to compute the eigenvectors. For  $\lambda_1$ 

$$\begin{bmatrix} 2 & 2i \\ -2i & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i \\ 0 & 0 \end{bmatrix},$$

hence  $v^{(1)} = (-i, 1)$ . For  $\lambda_2$ 

$$\begin{bmatrix} -2 & 2i \\ -2i & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -i \\ 0 & 0 \end{bmatrix},$$

hence  $v^{(2)}=(\mathsf{i},1).$  Clearly  $\|v^{(1)}\|=\|v^{(2)}\|=\sqrt{2}$  so let  $S=\frac{1}{\sqrt{2}}[v^{(1)}\ v^{(2)}]$  then

$$S^{-1}AS = S^*AS = \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix}. \quad |||||$$

Lösung HS15 - Serie 10 - Aufgabe 2

$$A = \begin{bmatrix} 2 & i & 1 \\ -i & 2 & -i \\ 1 & i & 2 \end{bmatrix}.$$

(i) Verifiziere, dass A hermitesch ist.

//// 
$$\overline{A^{\top}} = \begin{bmatrix} 2 & i & 1 \\ -i & 2 & -i \\ 1 & i & 2 \end{bmatrix} = A. /////$$

(ii) Bestimme die Eigenwerte von A.

//// We compute

$$\chi_A(z) = (2-z)^3 + 1 + 1 - ((2-z) + (2-z) + (2-z))$$

$$= (2-z)^3 - 3(2-z) + 2 = -z^3 + 6z^2 - 12z + 8 + 3z - 4$$

$$= -z^3 + 6z^2 - 9z + 4.$$

Clearly,  $\lambda_1 = 1$  is a root of  $\chi_A$  and we compute

$$\frac{-z^3 + 6z^2 - 9z + 4}{z - 1} = -z^2 + 5z - 4 = -(z - 1)(z - 4).$$

Therefore  $\lambda_2 = 1$  and  $\lambda_3 = 4$ . /////

(iii) Bestimme eine unitäre Matrix S so dass  $S^{-1}AS$  eine Diagonalmatrix ist.

//// We compute the eigenvectors of *A*. For  $\lambda_1 = \lambda_2$ 

$$\begin{bmatrix} 1 & i & 1 \\ -i & 1 & -i \\ 1 & i & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

hence  $v^{(1)}=(-i,1,0)$  and  $v^{(2)}=(-1,0,1)$ . Note that  $v^{(1)}$  and  $v^{(2)}$  are not orthogonal. Indeed  $\langle v^{(2)},v^{(1)}\rangle=-i\neq 0$ . However, by setting

$$\tilde{v}^{(2)} = v^{(2)} - \frac{\langle v^{(2)}, v^{(1)} \rangle}{\langle v^{(1)}, v^{(1)} \rangle} v^{(1)} = v^{(2)} + \frac{i}{2} v^{(1)} = (-1/2, i/2, 1),$$

we find

$$\langle \tilde{v}^{(2)}, v^{(1)} \rangle = \langle v^{(2)}, v^{(1)} \rangle - \frac{\langle v^{(2)}, v^{(1)} \rangle}{\langle v^{(1)}, v^{(1)} \rangle} \langle v^{(1)}, v^{(1)} \rangle = 0.$$

For  $\lambda_3$  we compute

$$\begin{bmatrix} -2 & i & 1 \\ -i & -2 & -i \\ 1 & i & -2 \end{bmatrix} \rightarrow \begin{bmatrix} -2 & i & 1 \\ 2 & -4i & 2 \\ 2 & 2i & -4 \end{bmatrix} \rightarrow \begin{bmatrix} -2 & i & 1 \\ 0 & -3i & 3 \\ 0 & 3i & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & -2 \\ 0 & 1 & i \\ 0 & 0 & 0 \end{bmatrix},$$

so  $v^{(3)} = (1, -i, 1)$ . Since  $||v^{(1)}|| = \sqrt{2}$ ,  $||\tilde{v}^{(2)}|| = \sqrt{3/2}$ , and  $||v^{(3)}|| = \sqrt{3}$ , let

$$S = \begin{bmatrix} -\frac{i}{\sqrt{2}} & \frac{-1/2}{\sqrt{3}/2} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{i/2}{\sqrt{3}/2} & -\frac{i}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{3}/2} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

then  $S^* = S^{-1}$  and

$$S^{-1}AS = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}. \quad |||||$$

## Lösung HS18 Serie 13 Aufgabe 4

#### Exercise 4 (Diagonalization)

Consider the matrix below:

$$A = \begin{pmatrix} 3 & -i & 0 \\ i & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) Without computation, argue that A is diagonalizable.
- (b) Find all the eigenvalus and corresponding eigenspaces of A.
- (c) Find a unitary matrix U such that  $UAU^{-1} = D$  is a diagonal matrix.

#### Solution:

- (a) The matrix A is Hermitian since  $A^T = \overline{A}$ . Hence A is diagonalizable and there exists an orthonormal basis of eigenvectors.
- (b) We compute the characteristic polynomial:

$$P_A(z) = \det \begin{pmatrix} 3-z & -i & 0 \\ i & 3-z & 0 \\ 0 & 0 & 1-z \end{pmatrix} = (1-z)[(3-z)^2 - 1].$$

Hence the first eigenvalue is given by  $\lambda_1 = 1$ . The other eigenvalues are given by the zeroes of the polynomial

$$(3-z)^2 - 1 = z^2 - 6z + 8 = (z-2)(z-4)$$

hence they are  $\lambda_2=2$  and  $\lambda_3=4$ . We proceed to compute the eigenspaces. The eigenspace to  $\lambda_1$  is given by

$$E_A(1) = \ker(A - I) = \ker\begin{pmatrix} 2 & -i & 0 \\ i & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \{(0, 0, x_3) | x_3 \in \mathbb{C}\}.$$

The eigenspace to  $\lambda_2$  is given by

$$E_A(2) = \ker(A - 2I) = \ker\begin{pmatrix} 1 & -i & 0 \\ i & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \{(x_1, x_2, 0)^T | x_1 - ix_2 = 0\} = \{(ix_2, x_2, 0)^T | x_2 \in \mathbb{C}\}.$$

The eigenspace to  $\lambda_3$  is given by

$$E_A(4) = \ker(A - 4I) = \ker\begin{pmatrix} -1 & -i & 0 \\ i & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \{(x_1, x_2, 0)^T | -x_1 - ix_2 = 0\} = \{(-ix_2, x_2, 0)^T | x_2 \in \mathbb{C}\}.$$

(c) We have to find a normalized vector in every eigenspace. Such vectors are given by  $v_1 = (0,0,1)^T$ ,  $v_2 = \frac{1}{\sqrt{2}}(i,1,0)^T$ ,  $v_3 = \frac{1}{\sqrt{2}}(-i,1,0)^T$ . The unitary matrix that we are looking for is then  $U = (v_1|v_2|v_3)$ .

## Zeige dass / Prüfe ob mit komplexen Zahlen

#### MAT141 HS17 Serie 10 Aufgabe 3:

Für welche Werte des komplexen Parameters  $\alpha \in \mathbb{C}$  ist die folgende Matrix

$$A := \begin{pmatrix} \alpha & 0 & 1/2 \\ 0 & \alpha & 1/2 & 0 \\ 0 & 1/2 & \alpha & 0 \\ 1/2 & 0 & 0 & \alpha \end{pmatrix} \in \mathbb{C}^{4 \times 4},$$

- (a) symmetrisch?
- (b) hermitisch?
- (c) unitär? (d) normal  $(A\overline{A}^T = \overline{A}^T A)$ ?

Lösung:

- (a)  $\forall \alpha \in \mathbb{C}$
- (b)  $\alpha \in \mathbb{R}$
- (c)  $\alpha \pm \frac{\sqrt{3}}{2}i$
- (d)  $\forall \alpha \in \mathbb{C}$

## MAT141 HS18 Serie 10 Aufgabe 2:

#### Exercise 2 (Hermitian and Unitary Matrices)

Which of the matrices below are unitary? Which ones are hermitian? Write down the inverses of the ones which are unitary.

$$\begin{split} A &= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\ B &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \\ C &= \begin{pmatrix} \frac{2i}{3} & -\frac{2i}{3} & \frac{i}{3} \\ \frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}} & 0 \\ -\frac{i}{3\sqrt{2}} & -\frac{i}{3\sqrt{2}} & \frac{4i}{3\sqrt{2}} \end{pmatrix} \\ D &= \begin{pmatrix} \frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0 \\ -\frac{i}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} \\ 0 & -\frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{pmatrix} \end{split}$$

#### MAT141 HS18 Serie 11 Aufgabe 2:

For each of the matrices below, check whether it is Hermitian or Unitary. If it is find the eigenvalues and an orthonormal basis of eigenvectors of  $\mathbb{C}^n$ .

$$A = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \quad C = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 2+i \\ 0 & 2-i & 1 \end{pmatrix}$$

Lösung:

 $A \text{ is hermitian but not unitary with ONB } \{ \left(\frac{-i}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^T, \left(\frac{i}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^T \}$   $B \text{ is unitary but not hermitian with ONB } \{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^T, \left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^T \}$   $C \text{ is hermitian but not unitary with ONB } \{ (1,0,0)^T, \left(0, \frac{2+i}{\sqrt{10}}, \frac{\sqrt{5}}{\sqrt{10}}\right)^T, \left(0, \frac{-2-i}{\sqrt{10}}, \frac{1}{\sqrt{2}}\right)^T \}$ 

## Lösung HS17 Serie 10 Aufgabe 3

Solution. For which values of  $\alpha \in \mathbb{C}$  is the matrix A

- 1. symmetric? A symmetric matrix defined as a square matrix that is equal to its transpose:  $A = A^T$ . Since the complex parameter  $\alpha$  only occupies diagonal elements, A is a symmetric matrix  $\forall \alpha \in \mathbb{C}$ .
- 2. hermitian? A hermitian matrix is a complex square matrix that is equal to its own conjugate transpose:  $A = A^*$ . In our case, we need to verify if:

$$\begin{pmatrix} \alpha & 0 & 0 & 1/2 \\ 0 & \alpha & 1/2 & 0 \\ 0 & 1/2 & \alpha & 0 \\ 1/2 & 0 & 0 & \alpha \end{pmatrix} \stackrel{?}{=} \begin{pmatrix} \bar{\alpha} & 0 & 0 & 1/2 \\ 0 & \bar{\alpha} & 1/2 & 0 \\ 0 & 1/2 & \bar{\alpha} & 0 \\ 1/2 & 0 & 0 & \bar{\alpha} \end{pmatrix}$$

The equality between A and its conjugate transpose is only given if, and only if  $\alpha = \bar{\alpha}$ , where  $\bar{\alpha}$  is the conjugate transpose of  $\alpha$ . This equality is only given when  $\alpha$  is real.

3. unitary? A unitary matrix A is a complex square matrix whose conjugate transpose is also its inverse:  $A^* = A^{-1}$ , so that  $AA^* = A^*A = \mathbb{I}$ . In our case we need to verify if:

$$\begin{pmatrix} |\alpha|^2 + \frac{1}{4} & 0 & 0 & \frac{1}{2}\alpha + \frac{1}{2}\bar{\alpha} \\ 0 & |\alpha|^2 + \frac{1}{4} & \frac{1}{2}\alpha + \frac{1}{2}\bar{\alpha} & 0 \\ 0 & \frac{1}{2}\alpha + \frac{1}{2}\bar{\alpha} & |\alpha|^2 + \frac{1}{4} & 0 \\ \frac{1}{2}\alpha + \frac{1}{2}\bar{\alpha} & 0 & 0 & |\alpha|^2 + \frac{1}{4} \end{pmatrix} \stackrel{?}{=} \mathbb{I}$$

The equality is only given if two conditions are met. First, the non-diagonal elements must vanish:  $\frac{1}{2}\alpha + \frac{1}{2}\bar{\alpha}$ . This is only given for values of  $\alpha$  without a real part:  $\alpha \in \mathbb{C} \notin \mathbb{R}$ , so that  $\frac{1}{2}\alpha + \frac{1}{2}\bar{\alpha} = \frac{1}{2}\alpha - \frac{1}{2}\alpha = 0$ . Second, the diagonal elements must equal unity:

$$|\alpha|^2 + \frac{1}{4} = 1 \Leftrightarrow |\alpha|^2 = \frac{3}{4} \Leftrightarrow \alpha = \pm \frac{\sqrt{3}}{2}i.$$

4. normal? A normal matrix A is a complex square matrix which commutes with its conjugate transpose  $A^*$ :  $AA^* = A^*A$ . In our case we need to verify if

$$\begin{pmatrix} \alpha & 0 & 0 & 1/2 \\ 0 & \alpha & 1/2 & 0 \\ 0 & 1/2 & \alpha & 0 \\ 1/2 & 0 & 0 & \alpha \end{pmatrix} \stackrel{?}{=} \begin{pmatrix} \bar{\alpha} & 0 & 0 & 1/2 \\ 0 & \bar{\alpha} & 1/2 & 0 \\ 0 & 1/2 & \bar{\alpha} & 0 \\ 1/2 & 0 & 0 & \bar{\alpha} \end{pmatrix}$$

$$\begin{pmatrix} \left|\alpha\right|^2 + \frac{1}{4} & 0 & 0 & \frac{1}{2}\alpha + \frac{1}{2}\bar{\alpha} \\ 0 & \left|\alpha\right|^2 + \frac{1}{4} & \frac{1}{2}\alpha + \frac{1}{2}\bar{\alpha} & 0 \\ 0 & \frac{1}{2}\alpha + \frac{1}{2}\bar{\alpha} & \left|\alpha\right|^2 + \frac{1}{4} & 0 \\ \frac{1}{2}\alpha + \frac{1}{2}\bar{\alpha} & 0 & 0 & \left|\alpha\right|^2 + \frac{1}{4} \end{pmatrix} \stackrel{?}{=} \begin{pmatrix} \left|\alpha\right|^2 + \frac{1}{4} & 0 & 0 & \frac{1}{2}\alpha + \frac{1}{2}\bar{\alpha} \\ 0 & \left|\alpha\right|^2 + \frac{1}{4} & \frac{1}{2}\bar{\alpha} + \frac{1}{2}\alpha & 0 \\ 0 & \frac{1}{2}\bar{\alpha} + \frac{1}{2}\alpha & \left|\alpha\right|^2 + \frac{1}{4} & 0 \\ \frac{1}{2}\bar{\alpha} + \frac{1}{2}\alpha & 0 & 0 & \left|\alpha\right|^2 + \frac{1}{4} \end{pmatrix}$$

The equality is trivial, as the non-diagonal matrix elements are sums of the same terms. Thus, the matrix A is normal  $\forall \alpha \in \mathbb{C}$ .

### Lösung HS18 Serie 10 Aufgabe 2

#### Exercise 2 (Hermitian and Unitary Matrices)

Which of the matrices below are unitary? Which ones are hermitian? Write down the inverses of the ones which are unitary.

$$\begin{split} A &= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\ B &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \\ C &= \begin{pmatrix} \frac{2i}{3} & \frac{2i}{3} & \frac{i}{3} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ -\frac{i}{3\sqrt{2}} & -\frac{i}{3\sqrt{2}} & \frac{4i}{3\sqrt{2}} \end{pmatrix} \\ D &= \begin{pmatrix} \frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0 \\ -\frac{i}{\sqrt{2}} & \sqrt{2} & \frac{i}{\sqrt{2}} \\ 0 & -\frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{pmatrix} \end{split}$$

Solution: There are several ways to check whether a matrix M is unitary. One of them is to check whether its columns form an orthonormal basis of  $\mathbb{C}^n$ , with respect to the standard inner product

$$\langle v, w \rangle = v_1 \bar{w}_1 + \ldots + v_n \bar{w}_n.$$

If this is the case then  $M^{-1} = \overline{M}^T$ .

On the other hand, a matrix is called Hermitian if  $\overline{M}^T = M$ .

- A has only real entries so \$\overline{A}^T = A^T\$. Also, we have that \$A^T = A\$. Hence \$A\$ is Hermitian. But \$A\$ is not unitary, since its columns do not form a basis (\$A\$ is not invertible).
- B is not Hermitian: We have

$$\overline{B} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix} \neq B^T$$

(B is however symmetric:  $B^T = B$ ).

We claim that B is unitary. Denote  $b_1, b_2$  the columns of b. Again, we check the condition (1):

$$\begin{split} \langle b_1, b_1 \rangle &= \frac{1}{2}(1+i(-i)) = 1, \\ \langle b_1, b_2 \rangle &= \frac{1}{2}(-i+i) = 0, \\ \langle b_2, b_2 \rangle &= \frac{1}{9}(i(-i)+1) = 1. \end{split}$$

Hence B is unitary, with inverse

$$B^{-1} = \overline{B}^T = \overline{B} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix}.$$

We claim that C is unitary. Denote c<sub>1</sub>, c<sub>2</sub>, c<sub>3</sub> the columns of C. Again we check the condition (1):

$$\begin{split} \langle c_1,c_1\rangle &= \frac{2i}{3} \left(-\frac{2i}{3}\right) + \frac{2i}{3} \left(-\frac{2i}{3}\right) + \frac{i}{3} \left(-\frac{i}{3}\right) = \frac{4}{9} + \frac{4}{9} + \frac{1}{9} = 1, \\ \langle c_1,c_2\rangle &= \frac{1}{3\sqrt{2}} (2i-2i) = 0, \\ \langle c_1,c_3\rangle &= \frac{1}{9\sqrt{2}} \left(2i\cdot i + 2i\cdot i + i\cdot (-4i)\right) = \frac{1}{9\sqrt{2}} (-2-2+4) = 0, \\ \langle c_2,c_2\rangle &= \frac{1}{2} (1+1) = 1, \\ \langle c_2,c_3\rangle &= \frac{1}{12} (-i+i) = 0, \\ \langle c_3,c_3\rangle &= \frac{1}{18} (-i\cdot i + -i\cdot i + 4i\cdot (-4i)) = \frac{1}{18} (1+1+16) = 1. \end{split}$$

Hence C is unitary and its inverse is

$$C^{-1} = \overline{C}^T = \begin{pmatrix} -\frac{2i}{3} & \frac{1}{\sqrt{2}} & \frac{i}{3\sqrt{2}} \\ -\frac{2i}{3} & -\frac{1}{\sqrt{2}} & \frac{i}{3\sqrt{2}} \\ -\frac{i}{3} & 0 & -\frac{4i}{3\sqrt{2}} \end{pmatrix}$$

Notice that  $\overline{C}^T \neq C$ , hence C is not Hermitian.

We have

$$\overline{D}^T = \begin{pmatrix} -\frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0\\ -\frac{i}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}}\\ 0 & -\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}} \end{pmatrix} \neq D.$$

Hence D is not Hermitian. It is also not unitary since its columns do not form an orthonormal basis of  $\mathbb{C}^3$ : E.g. the first and third vector are not orthogonal to each other.

#### Lösung HS18 Serie 11 Aufgabe 2

#### Exercise 2 (Unitary and Hermitian Matrices)

For each of the matrices below, check whether it is Hermitian or Unitary. If it is find the eigenvalues and an orthonormal basis of eigenvectors of  $\mathbb{C}^n$ .

$$A = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 2+i \\ 0 & 2-i & 1 \end{pmatrix}$$

Solution:

• The matrix A is not unitary, since its column vectors are not normalized (e.g. the first column has norm  $\sqrt{2}$ . However, it is Hermitian: The transpose is

$$A^T = \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix} = \overline{A}$$

and hence  $\overline{A}^T = \overline{\overline{A}} = A$ . We proceed to compute the orthonormal basis of eigenvectors. The characteristic polynomial is

$$P_A(z) = \det(A - zI_2) = \det\begin{pmatrix} 1 - z & i \\ -i & 1 - z \end{pmatrix} = (1 - z)^2 - 1 = z^2 - 2z = z(z - 2)$$

and the eigenvalues are  $\lambda_1=0$  and  $\lambda_2=2.$  The eigenspace of  $\lambda_1=0$  is given by

$$\ker(A - 0I_2) = \ker\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} = \{(x_1, x_2)^T \in \mathbb{C}^2 | x_1 + ix_2 = 0\} = \{(-ix_2, x_2)^T | x_2 \in \mathbb{C}\}$$

which is spanned by the eigenvector  $(-i,1)^T$ . Normalizing it we obtain  $v_1 = \frac{1}{\sqrt{2}}(-i,1)^T$ . The eigenspace to  $\lambda_2 = 2$  is given by

$$\ker(A - 2I_2) = \ker\begin{pmatrix} -1 & i \\ -i & -1 \end{pmatrix} = \{(x_1, x_2) \in \mathbb{C}^2 | -x_1 + ix_2 = 0\} = \{(ix_2, x_2) | x_2 \in \mathbb{C}\}$$

which is spanned by the eigenvector  $(i,1)^T$ . Normalizing we obtain  $v_2 = \frac{1}{\sqrt{2}}(i,1)$  and  $v_1, v_2$  is the desired basis of eigenvectors.

## Lösung HS18 Serie 11 Aufgabe 2 - Fortsetzung

The matrix B is unitary, since its column vectors are normalized and orthogonal to each other.
 However, it is not Hermitian: The transpose is

$$B^T = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = B$$

and hence B is not Hermitian. We proceed to compute the orthonormal basis of eigenvectors. The characteristic polynomial is

$$P_B(z) = \det(B - zI_2) = \det\begin{pmatrix} -z & i\\ i & -z \end{pmatrix} = z^2 + 1$$

and the eigenvalues are  $\lambda_1 = +i$  and  $\lambda_2 = -i$ . The eigenspace of  $\lambda_1 = i$  is given by

$$\ker(A - iI_2) = \ker\begin{pmatrix} -i & i \\ i & -i \end{pmatrix} = \{(x_1, x_2)^T \in \mathbb{C}^2 | -ix_1 + ix_2 = 0\} = \{(x_2, x_2)^T | x_2 \in \mathbb{C}\}$$

which is spanned by the eigenvector  $(1,1)^T$ . Normalizing it we obtain  $v_1 = \frac{1}{\sqrt{2}}(1,1)^T$ . The eigenspace to  $\lambda_2 = 2$  is given by

$$\ker(A + iI_2) = \ker\begin{pmatrix} i & i \\ i & i \end{pmatrix} = \{(x_1, x_2) \in \mathbb{C}^2 | ix_1 + ix_2 = 0\} = \{(-x_2, x_2) | x_2 \in \mathbb{C}\}$$

which is spanned by the eigenvector  $(-1,1)^T$ . Normalizing we obtain  $v_2 = \frac{1}{\sqrt{2}}(-1,1)$  and  $v_1, v_2$  is the desired basis of eigenvectors.

 The matrix C is not unitary, since its column vectors are not normalized (e.g. the first column has norm 5). However, it is Hermitian: The transpose is

$$C^T = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 2-i \\ 0 & 2+i & 1 \end{pmatrix} = \overline{C}$$

and hence  $\overline{C}^T = \overline{\overline{C}} = C$ . We proceed to compute the orthonormal basis of eigenvectors. The characteristic polynomial is

$$P_C(z) = \det(C - zI_2) = \det\begin{pmatrix} 5 - z & 0 & 0\\ 0 & 1 - z & 2 + i\\ 0 & 2 - i & 1 - z \end{pmatrix} = (5 - z)[(1 - z)^2 - (2 - i)(2 + i)] = (5 - z)[z^2 - 2z - 4]$$

and the eigenvalues are  $\lambda_1 = 5$  and

$$\lambda_{2,3} = \frac{2 \pm \sqrt{4 + 16}}{2} = 1 \pm \sqrt{5}$$

i.e.  $\lambda_2=1+\sqrt{5}$  and  $\lambda_3=1-\sqrt{5}$ . The eigenspace of  $\lambda_1=5$  is given by

$$\ker(A - 5I_2) = \ker\begin{pmatrix} 0 & 0 & 0\\ 0 & -4 & 2+i\\ 0 & 2-i & -4 \end{pmatrix} = \{(x_1, 0, 0) | x_1 \in \mathbb{C}\}.$$

This can be checked either by solving the corresponding system of linear equation or by noticing that  $v_1 = (1, 0, 0)^T$  lies in this kernel, but this kernel has dimension 1 since it is the eigenspace of an eigenvalue with algebraic multiplicity 1.  $v_1$  is already normalized.

The eigenspace to  $\lambda_2 = 1 + \sqrt{5}$  is given by

$$\ker(A - (1 + \sqrt{5}I_2)) = \ker\begin{pmatrix} 4 - \sqrt{5} & 0 & 0\\ 0 & -\sqrt{5} & 2 + i\\ 0 & 2 - i & -\sqrt{5} \end{pmatrix}.$$

## Lösung HS18 Serie 11 Aufgabe 2 - Fortsetzung

Writing out the corresponding system of linear equations, the first equation implies  $x_1 = 0$ . The second equation implies that  $(2+i)x_3 = \sqrt{5}x_2$ , and hence  $x_2 = \frac{2+i}{\sqrt{5}}x_3$ . Since we know that the eigenspace has dimension 1, it is given by

$$\{(0, \frac{2+i}{\sqrt{5}}x_3, x_3)|x_3 \in \mathbb{C}\}.$$

Choosing  $x_3 = \sqrt{5}$  we obtain the eigenvector  $\tilde{v}_2 = (0, 2+i, \sqrt{5})$  which has norm square

$$||\tilde{v}_2||^2 = (2+i)(2-i) + \sqrt{5}^2 = 10.$$

Normalizing we obtain

$$v_2 = \left(0, \frac{2+i}{\sqrt{10}}, \frac{1}{\sqrt{2}}\right)^T.$$

In exactly the same way, we obtain

$$v_3 = \left(0, -\frac{2+i}{\sqrt{10}}, \frac{1}{\sqrt{2}}\right)^T$$

as a normalized eigenvector to  $\lambda_3$  and  $v_1, v_2, v_3$  is the desired basis of eigenvectors.

## DGL-Systeme mit komplexen Zahlen

## HS20 Übungsserie 13 Aufgabe 3:

Given the following system of linear ODE:

$$y_1' = -2y_1 + 5y_2,$$

$$y_2' = -y_1 - 4y_2,$$

- 1. Give the general complex solution.
- 2. Give the general real solution (obtained from your result in the previous subquestion).

Lösung:

$$y(t) = C_1 \cdot e^{(-3+2i)t} \begin{pmatrix} -5 \\ 1-2i \end{pmatrix} + C_2 \cdot e^{(-3-2i)t} \begin{pmatrix} -5 \\ 1+2i \end{pmatrix}, \quad C_1, C_2 \in \mathbb{R}$$

$$1. \ y(t) = C_1 \cdot e^{(-3+2i)t} \begin{pmatrix} -5 \\ 1-2i \end{pmatrix} + C_2 \cdot e^{(-3-2i)t} \begin{pmatrix} -5 \\ 1+2i \end{pmatrix}, \quad C_1, C_2 \in \mathbb{R}$$

$$2. \ y(t) = C_1 \cdot e^{-3t} \begin{pmatrix} -5\cos(2t) \\ \cos(2t) + 2\sin(2t) \end{pmatrix} + C_2 \cdot e^{-3t} \begin{pmatrix} -5\sin(2t) \\ \sin(2t) - 2\cos(2t) \end{pmatrix}, \quad C_1, C_2 \in \mathbb{R}$$

### HS17 Probeprüfung Aufgabe 5:

Betrachten Sie das folgende System von Differentialgleichungen:

$$y_1'(t) = y_1(t) - y_2(t),$$

$$y_2'(t) = 2y_1(t) - y_2(t),$$

- a) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems.
- b) Finden Sie die Lösung mit Anfangswerten  $y_1(0) = 1$  und  $y_2(0) = 2$ .

Lösung:

1. 
$$y(t) = C_1 \begin{pmatrix} \cos(t) \\ \cos(t) + \sin(t) \end{pmatrix} + C_2 \begin{pmatrix} \sin(t) \\ \sin(t) - \cos(t) \end{pmatrix}, \quad C_1, C_2 \in \mathbb{R}$$

1. 
$$y(t) = C_1 \begin{pmatrix} \cos(t) \\ \cos(t) + \sin(t) \end{pmatrix} + C_2 \begin{pmatrix} \sin(t) \\ \sin(t) - \cos(t) \end{pmatrix}, \quad C_1, C_2 \in \mathbb{R}$$
2.  $y(t) = 1 \cdot \begin{pmatrix} \cos(t) \\ \cos(t) + \sin(t) \end{pmatrix} - 1 \cdot \begin{pmatrix} \sin(t) \\ \sin(t) - \cos(t) \end{pmatrix} = \begin{pmatrix} \cos(t) - \sin(t) \\ 2\cos(t) \end{pmatrix}$ 

#### HS19 Übungsserie 13 Aufgabe 3:

Given the following system of linear ODE:

$$y_1' = y_1 - 2y_2,$$

$$y_2' = 2y_1 - y_2$$

- 1. Give the general complex solution.
- 2. Give the general real solution (obtained from your result in the previous subquestion).

Lösung:

$$1. \ y(t) = C_1 \cdot e^{i\sqrt{3}t} \begin{pmatrix} 2 \\ 1 - i\sqrt{3} \end{pmatrix} + C_2 \cdot e^{-i\sqrt{3}t} \begin{pmatrix} 2 \\ 1 + i\sqrt{3} \end{pmatrix}, \quad C_1, C_2 \in \mathbb{R}$$

$$\begin{aligned} 1.\ y(t) &= C_1 \cdot e^{i\sqrt{3}t} \begin{pmatrix} 2 \\ 1-i\sqrt{3} \end{pmatrix} + C_2 \cdot e^{-i\sqrt{3}t} \begin{pmatrix} 2 \\ 1+i\sqrt{3} \end{pmatrix}, \quad C_1, C_2 \in \mathbb{R} \end{aligned}$$
 
$$2.\ y(t) &= C_1 \begin{pmatrix} 2\cos(\sqrt{3}t) \\ \cos(\sqrt{3}t) + \sqrt{3}\sin(\sqrt{3}t) \end{pmatrix} + C_2 \begin{pmatrix} 2\sin(\sqrt{3}t) \\ \sin(\sqrt{3}t) - \sqrt{3}\cos(\sqrt{3}t) \end{pmatrix}, \quad C_1, C_2 \in \mathbb{R}$$

## Lösung HS20 - Serie 13 - Aufgabe 3

**Exercise 3.** Given the following system of linear ODE:

$$y_1' = -2y_1 + 5y_2$$
  
$$y_2' = -y_1 - 4y_2$$

- 1. Give the general complex solution.
- 2. Give the general real solution (obtained from your result in the previous subquestion).

  Solution.
  - 1. As usual, we first calculate the eigenvalues of the associated matrix  $\begin{pmatrix} -2 & 5 \\ -1 & -4 \end{pmatrix}$  and find the two eigenvalues  $\lambda_1 = -3 + 2i$  and  $\lambda_2 = -3 2i$ . Next we look for an eigenvectors to  $\lambda_1$ .

$$A - (-3+2i)\operatorname{Id} = \begin{pmatrix} -2 - (-3+2i) & 5 \\ -1 & -4 - (-3+2i) \end{pmatrix} = \begin{pmatrix} 1-2i & 5 \\ -1 & -1-2i \end{pmatrix}.$$

Hence,  $v_1 = (y_1, y_2)$  is an eigenvector to  $\lambda_1$  if  $(1-2i)y_1+5y_2=0$ , so we find the eigenvector  $v_1 = (-5, 1-2i)$ . To find an eigenvalue to  $\lambda_2$ , we can complex conjugate  $v_1$  and find  $v_2 = (-5, 1+2i)$ . Thus, the general complex solution is given by

$$y(t) = C_1 e^{\lambda_1 t} v_1 + C_2 e^{\lambda_2 t} v_2 = C_1 e^{(-3+2i)t} \begin{pmatrix} -5\\1-2i \end{pmatrix} + C_2 e^{(-3-2i)t} \begin{pmatrix} -5\\1+2i \end{pmatrix}$$

for some  $C_1, C_2 \in \mathbb{R}$ .

### Lösung HS20 - Serie 13 - Aufgabe 3 - Fortsetzung

2. We already have a basis or the space of solutions

$$\left[e^{(-3+2i)t}\begin{pmatrix} -5\\1-2i\end{pmatrix}, e^{(-3-2i)t}\begin{pmatrix} -5\\1+2i\end{pmatrix}\right].$$

We can obtain a different basis with only real entries by using Euler's formula, i.e.

$$e^{\lambda_1 t} = e^{(-3+2i)t} = e^{-3t}e^{2ti} = e^{-3t}(\cos(2t) + i\sin(2t)),$$

$$e^{\lambda_2 t} = e^{(-3-2i)t} = e^{-3t}e^{-2ti} = e^{-3t}(\cos(-2t) + i\sin(-2t)) = e^{-3t}(\cos(2t) - i\sin(2t)).$$

Here, we also used the fact that  $\cos(-x) = \cos(x)$  and  $\sin(-x) = -\sin(x)$ . We then obtain a real basis for the space of solutions by combining the two in the following way.

$$[w_1, w_2] := \left[ \frac{1}{2} \left( e^{\lambda_1 t} v_1 + e^{\lambda_2 t} v_2 \right), \quad \frac{1}{2i} \left( e^{\lambda_1 t} v_1 - e^{\lambda_2 t} v_2 \right) \right].$$

We compute

$$\begin{split} w_1 &= \frac{1}{2} \left( e^{\lambda_1 t} v_1 + e^{\lambda_2 t} v_2 \right) \\ &= \frac{1}{2} \left( e^{-3t} (\cos(2t) + i \sin(2t)) \begin{pmatrix} -5 \\ 1 - 2i \end{pmatrix} + e^{-3t} (\cos(2t) - i \sin(2t)) \begin{pmatrix} -5 \\ 1 + 2i \end{pmatrix} \right) \\ &= \frac{1}{2} e^{-3t} \left( \begin{pmatrix} -5 (\cos(2t) + i \sin(2t)) \\ (1 - 2i) (\cos(2t) + i \sin(2t)) \end{pmatrix} + \begin{pmatrix} -5 (\cos(2t) - i \sin(2t)) \\ (1 + 2i) (\cos(2t) - i \sin(2t)) \end{pmatrix} \right) \\ &= e^{-3t} \begin{pmatrix} -5 \cos(2t) \\ \cos(2t) + 2 \sin(2t) \end{pmatrix}, \\ w_2 &= \frac{1}{2i} \left( e^{\lambda_1 t} v_1 - e^{\lambda_2 t} v_2 \right) \\ &= \frac{1}{2i} \left( e^{-3t} (\cos(2t) + i \sin(2t)) \begin{pmatrix} -5 \\ 1 - 2i \end{pmatrix} - e^{-3t} (\cos(2t) - i \sin(2t)) \begin{pmatrix} -5 \\ 1 + 2i \end{pmatrix} \right) \\ &= \frac{1}{2i} e^{-3t} \left( \begin{pmatrix} -5 (\cos(2t) + i \sin(2t)) \\ (1 - 2i) (\cos(2t) + i \sin(2t)) \end{pmatrix} - \begin{pmatrix} -5 (\cos(2t) - i \sin(2t)) \\ (1 + 2i) (\cos(2t) - i \sin(2t)) \end{pmatrix} \right) \\ &= e^{-3t} \begin{pmatrix} -5 \sin(2t) \\ \sin(2t) - 2 \cos(2t) \end{pmatrix}. \end{split}$$

The general real solution to the system is thus given by

$$y(t) = C_1 e^{-3t} \begin{pmatrix} -5\cos(2t) \\ \cos(2t) + 2\sin(2t) \end{pmatrix} + C_2 e^{-3t} \begin{pmatrix} -5\sin(2t) \\ \sin(2t) - 2\cos(2t) \end{pmatrix}$$

for some  $C_1, C_2 \in \mathbb{R}$ .

## Lösung HS17 - Probeprüfung - Aufgabe 5

#### Aufgabe 5.

Betrachten Sie das folgende System von Differentialgleichungen:

$$\begin{cases} y_1'(t) &= y_1(t) - y_2(t) , \\ y_2'(t) &= 2y_1(t) - y_2(t) . \end{cases}$$

- (a) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems.
- (b) Finden Sie die Lösung mit Anfangswerten  $y_1(0) = 1$  und  $y_2(0) = 2$ .

## Lösung HS19 - Serie 13 - Aufgabe 3

**Exercise 3** (6 points). Given the following system of linear ODE:

$$y_1' = y_1 - 2y_2 y_2' = 2y_1 - y_2$$

- 1. Give the general complex solution.
- 2. Give the general real solution (obtained from your result in the previous subquestion).

Solution.

1. As usual, we first calculate the eigenvalues of the associated matrix:

$$A = \begin{pmatrix} 1 & -2 \\ 2 & -1 \end{pmatrix}$$

and find two complex solutions:  $\lambda_1 = i\sqrt{3}$  and  $\lambda_2 = \overline{\lambda_1} = -i\sqrt{3}$ . Next we look for the eigenvectors: For  $\lambda_1$ :

$$A - \lambda_1 1_{\mathbb{R}^2} = \begin{pmatrix} 1 - i\sqrt{3} & -2\\ 2 & -1 - i\sqrt{3} \end{pmatrix}$$

The first row gives us  $(1 - i\sqrt{3})y_1 - 2y_2 = 0$ , so we find the eigenvector  $v_1 = (2, 1 - i\sqrt{3})$ . Complex conjugating gives us the other eigenvector:  $v_2 = (2, 1 + i\sqrt{3})$ . Thus, the general complex solution is given by:

$$y(t) = C_1 e^{\lambda_1 t} v_1 + C_2 e^{\lambda_2 t} v_2 = C_1 e^{i\sqrt{3}t} \begin{pmatrix} 2 \\ 1 - i\sqrt{3} \end{pmatrix} + C_2 e^{-i\sqrt{3}t} \begin{pmatrix} 2 \\ 1 + i\sqrt{3} \end{pmatrix}$$

2. The general linear combination of the coordinatewise real and imaginary parts of  $e^{\lambda_1 t}v_1$  (or equivalently those of  $e^{\lambda_2 t}v_2$ , which is after all just the conjugate of the former) constitutes the general real solution. In order to determine the parts, we first write  $e^{\lambda_1 t} = e^{i\sqrt{3}t} = \cos(\sqrt{3}t) + i\sin(\sqrt{3}t)$  using Euler's formula, and calculate

$$\Re(e^{\lambda_1 t} v_1) = \begin{pmatrix} 2\cos(\sqrt{3}t) \\ \cos(\sqrt{3}t) + \sqrt{3}\sin(\sqrt{3}t) \end{pmatrix} \quad \text{and} \quad \Im(e^{\lambda_1 t} v_1) = \begin{pmatrix} 2\sin(\sqrt{3}t) \\ -\sqrt{3}\cos(\sqrt{3}t) + \sin(\sqrt{3}t) \end{pmatrix}.$$

Thus, the general real solution is

$$y(t) = C_1 \begin{pmatrix} 2\cos(\sqrt{3}t) \\ \cos(\sqrt{3}t) + \sqrt{3}\sin(\sqrt{3}t) \end{pmatrix} + C_2 \begin{pmatrix} 2\sin(\sqrt{3}t) \\ -\sqrt{3}\cos(\sqrt{3}t) + \sin(\sqrt{3}t) \end{pmatrix}$$

with real  $C_1$  and  $C_2$ .